
A Zero-One Law for Deterministic 2-Party Secure Computation∗

Hemanta K. Maji† Manoj Prabhakaran† Mike Rosulek‡

November 5, 2009

Abstract

We use security in the Universal Composition framework as a means to study the “cryptographic
complexity” of 2-party secure computation tasks (functionalities). We say that a functionality F reduces
to another functionality G if there is a UC-secure protocol for F using ideal access to G. This reduction
is a natural and fine-grained way to compare the relative complexities of cryptographic tasks. There
are two natural “extremes” of complexity under the reduction: the trivial functionalities, which can be
reduced to any other functionality; and the complete functionalities, to which any other functionality can
be reduced.

In this work we show that under a natural computational assumption (the existence of a protocol for
oblivious transfer secure against semi-honest adversaries), there is a zero-one law for the cryptographic
complexity of 2-party deterministic functionalities. Namely, every such functionality is either trivial
or complete. No other qualitative distinctions exist among functionalities, under this computational
assumption.

While nearly all previous work classifying multi-party computation functionalities has been restricted
to the case of secure function evaluation, our results are the first to consider completeness of arbitrary
reactive functionalities, which receive input and give output repeatedly throughout several rounds of
interaction. One important technical contribution in this work is to initiate the comprehensive study of the
cryptographic properties of reactive functionalities. We model these functionalities as finite automata and
develop an automata-theoretic methodology for classifying and studying their cryptographic properties.
Consequently, we completely characterize the reactive behaviors that lead to cryptographic non-triviality.
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1 Introduction
Secure multi-party computation (MPC) is one of the most surprising computational phenomena known.
In fact, the paradigm encompasses not one, but a wide range of phenomena, depending on the MPC task
(functionality) in question. One may ask whether, within this vast range of tasks, some tasks have more
cryptographic sophistication than others, in terms of how easily they can be securely realized.

In a highly influential piece of work, Goldreich, Micali, and Wigderson [GMW87] showed that under a
natural computational assumption, there is no qualitative distinction among the MPC functionalities: they
are all securely realizable. However, in another influential work, Canetti [C01] showed that under a more
demanding but more realistic model of security, at least one qualitative distinction exists among MPC func-
tionalities, regardless of any computational assumption: the separation between “trivial” and “non-trivial”
functionalities. In this paper we show that, under the same intractability assumption needed for the results
in [GMW87], the distinction between trivial and non-trivial functionalities is the only qualitative distinction
among deterministic 2-party functionalities in Canetti’s stronger security framework for MPC.

More formally, we use a natural complexity-theoretic reduction to compare the qualitative “crypto-
graphic complexities” of MPC functionalities. We say that a functionalityF reduces to G (writtenF vPPT G)
if there is a secure protocol for F that uses ideal access to G. We use the strong definition of security from
the the framework of Universal Composability (UC) [C01]. Under this reduction, there are two natural
extremes of cryptographic complexity: we call a functionality “trivial” if it can be reduced to every other
functionality and “complete” if every functionality can be reduced to it. Stated in these terms, our main
result is the following:

The following two statements are equivalent:

Zero-One Law: Every deterministic, finite 2-party functionality is either trivial or complete.

sh-OT Assumption: There exists a 2-party protocol that securely realizes the oblivious trans-
fer functionality against semi-honest (a.k.a., passive, honest-but-curious) PPT adversaries.

The zero-one law applies not just to secure function evaluation functionalities, but also to reactive ones that
receive input and give output repeatedly over many rounds of interaction, maintaining secret state between
rounds. To the best of our knowledge, ours is the first work that considers how to use arbitrary reactive
functionalities for other cryptographic purposes. In comparison, previous works like [GMW87, CLOS02]
only give protocols to securely realize arbitrary reactive functionalities; other works exclusively considered
non-reactive functionalities, or else considered only specific reactive functionalities, like commitment.

Behavioral Components of Functionalities. To establish the zero-one law, we advance on two technical
fronts in the study of complexity of secure multi-party computation. The first front focuses on understanding
distinct non-trivial behavioral components of (possibly reactive) functionalities. We identify a list of four
qualitatively distinct such components. For each one we can associate a familiar “canonical” functionality
which is non-trivial for only that reason:
• Allowing simultaneous exchange of information, exemplified by the boolean XOR functionality FXOR.
• Selectively hiding one party’s inputs from the other, exemplified by a simple SFE functionality we

introduce called simple cut-and-choose, FCC.
• Selectively hiding both party’s inputs simultaneously, exemplified by the oblivious transfer function-

ality FOT.
• Holding meaningful hidden information in internal memory between rounds, exemplified by the com-

mitment functionality FCOM. (This component can appear only in a reactive functionality.)

Formally defining each of these components, especially the last one, requires us to develop new automata-
theoretic tools for reasoning about the behavior of reactive functionalities. A more detailed overview of
these techniques is given in Section 2.
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We show that these four fundamental behaviors are in fact an exhaustive characterization of non-triviality:
in Theorems 1 and 4, we show that a reactive functionality G is non-trivial if and only if F v G uncondition-
ally for some F ∈ {FXOR,FCC,FOT,FCOM}.1 In other words, every non-trivial functionality must include
at least one of the above four components above. Since our definitions of the four fundamental non-trivial
behaviors are all combinatorial, we are able to give the first complete combinatorial characterization of
non-triviality (consequently, completeness) for reactive functionalities.

Demonstrating Completeness. Our second technical front focuses on building protocols under minimal
computational intractability assumptions. To establish the zero-one law, it suffices to show that each of the
four canonical non-trivial functionalities is complete. Two of these, oblivious transfer and commitment,
are already known to be complete under the reduction we consider. We show that FXOR and FCC are also
complete under the minimal sh-OT assumption. The techniques used in these new protocols are summarized
in more detail in Section 2.

It is instructive to compare our new protocol constructions to that of [CLOS02], which has been the clos-
est to an analogue of the [GMW87] result for the stronger security definition in [C01]. While [CLOS02] only
shows the completeness of one specific functionality, we show that every deterministic non-trivial function-
ality is complete (under sh-OT assumption). Even for the complete functionality considered in [CLOS02]
(coin-tossing), we improve over their protocol, because the computational intractability assumption used
there is not known to follow from the sh-OT assumption. However, the protocol in [CLOS02] provides se-
curity against adaptive corruption, whereas we do not know whether the zero-one law extends to that setting
(even under a stronger intractability assumption).

A Framework for Computational Intractability Assumptions. An important contribution of this work
is that, in concert with subsequent results in a companion paper [MPR10], it forms the foundations for a
framework to study the computational intractability assumptions necessary for cryptography by relating
them to secure multi-party computation functionalities. While our results in this work focus on the suffi-
ciency of various assumptions for reductions of the form F vPPT G, the complementary results of [MPR10]
classify the necessity of various assumptions for such reductions.

Since several reductions of the form F vPPT G turn out to be exactly equivalent to well-known com-
putational assumptions, this motivates an approach of defining computational assumptions in terms of such
reductions. Such assumptions must be of a fundamental nature for MPC, since they are not introduced to
prove security of protocols, but are derived directly from the definitions of MPC functionalities themselves.

While our results in this work imply that the sh-OT assumption is the maximal assumption that emerges
in this framework, we conjecture that the existence of one-way functions is the minimal assumption emerg-
ing in the framework. A more intriguing question is whether there are other intermediate assumptions. We
conjecture there are, but for a broad class of reductions considered in [MPR10], all such assumptions are
equivalent to one of the two mentioned above. Put differently, one likely outcome of this line of investigation
is to discover new cryptographically interesting worlds in “Impagliazzo’s multiverse” [I95] between Cryp-
tomania (which we interpret as a world where the sh-OT assumption is true) and Minicrypt (where only
one-way functions exist), or to show there are none. The classification and protocols here and the lower
bounds in [MPR10] form the basic results in such an investigation.

Related Work. In Appendix A we briefly survey some of the important works relevant to our study of
2-party functionalities. Here we focus on describing important differences between previous work and
our own. The bulk of the work on complexity of 2-party functionalities considers the computationally
unbounded setting [K88, CK89, K89B, B89, K91, K00, KKMO00, KMQR09, MPR09].

1Indeed justFXOR andFCC by themselves are an exhaustive characterization of non-triviality, as they can both be unconditionally
obtained fromFOT andFCOM. However, we include all four functionalities in our list of fundamental behavioral components because
completeness is established differently for each of them.
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In the computationally bounded setting, there have been fewer relevant results: For the special case of
SFE functionalities in which only one party receives the output, Beimel et al. [BMM99] showed that the
sh-OT assumption is implied by the existence of a semi-honest secure protocol for any functionality that is
not unconditionally trivial. [HNRR06] partially extends this result beyond finite functionalities, but is still
restricted to the case of asymmetric-output.2

The above results were in the standalone setting, and are not true for the setting with an arbitrary envi-
ronment. Since [C01] introduced the Universal Composition framework to formalize security in arbitrary
environments, there have been several works on cryptographic complexity of functionalities in this setting.
In particular, [C01, CF01, CKL03, PR08] characterize trivial functionalities. On the other hand, [CLOS02]
showed that the “coin-tossing” functionality is complete, assuming the existence of enhanced trapdoor per-
mutations and dense cryptosystems. [DNO09] independently show the completeness of the coin-tossing
functionality under the minimal assumption, as we do. Their construction is similar in spirit to our protocol
for the same task, though more complicated due to the use of an intermediate “public-key infrastructure”
functionality. In fact our current protocol is the result of a simplification to a protocol in an earlier draft of
this work, motivated by the result of [DNO09].

We stress that virtually all the above mentioned prior results are either restricted to characterizing triv-
iality (not completeness), characterizing only non-reactive functionalities, or considering only specific and
not arbitrary reactive functionalities. Ours is the first characterization of completeness for arbitrary reactive
functionalities.

Finally, in subsequent work we use the results in this paper, in conjunction with new lower bounds, to
initiate a foundational study of cryptographically relevant intractability assumptions [MPR10] using secure
multi-party functionalities.

2 Overview of Our Techniques
In proving our main result, the more interesting direction is to show that sh-OT assumption implies the
zero-one law. That is, we must construct protocols to demonstrate the completeness of every non-trivial
functionality, using only the sh-OT assumption. We do this in a series of steps, outlined in Figure 1.

Non-trivial
function-

alities

Non-trivial
SFE Func-
tionalities

FCC

FOT

FXOR

FEXTCOM FCOM
Any func-
tionality

[K88, IPS08]

Theorem 3

OWF

Theorem 2

sh-OT

Theorem 3

OWF

[GMW87,
CLOS02]

sh-OT

Theorem 4

Theorem 1

Figure 1: Overview of protocol constructions used in proving main result. An arrow from functionality F to G
denotes a secure protocol for G using ideal access to F . Arrows not labeled by a computational assumption indicate
unconditionally secure protocols.

The Non-Reactive Case. In Section 4, we first prove the main result for the special case of non-reactive
(also known as secure function evaluation, or SFE) functionalities, which simply evaluate a function on the
two parties’ inputs and then stop responding.

2In Section 7 we show that, as in [HNRR06], there is a gap between triviality and completeness when our results are extended
to unbounded-memory functionalities.
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As described in the introduction, we identify FXOR, FOT, and FCC as the canonical components of non-
triviality for SFE functionalities. FCC is defined as the secure evaluation of the symmetric-output function
whose function table is 0 2

1 2
; note that Bob (whose input corresponds to the choice of columns) can choose

whether to learn Alice’s input (the choice of rows), and Alice learns Bob’s choice. Thus FCC exemplifies a
selective hiding of information about just one party’s inputs.

In Theorem 1 we show that every non-trivial SFE functionality F must satisfy either FXOR vSTAT F ,
FOT vSTAT F , or FCC vSTAT F . Our analysis involves a characterization of important 2 × 2 minors in the
function table of F . For each of FXOR, FOT, and FCC, we introduce a general form (in which parties may
receive different outputs) of a 2 × 2 minor which succinctly captures the general behavior that causes each
functionality to be non-trivial.

To establish the zero-one law for this special case, we must therefore show that each of these three
canonical functionalities is complete. It is well-known that FOT is (unconditionally) complete, even under
the strong notion of reduction that we consider [K88, IPS08]. For the other two cases, we use the fact
that the commitment functionality FCOM is complete the UC framework under the sh-OT assumption. This
follows from the well-known CLOS result [CLOS02]. Thus, to complete our claim it suffices to show that
FCOM vPPT FCC and FCOM vPPT FXOR.

We give a new commitment protocol in the FXOR-hybrid model (Theorem 2). We note that [CLOS02]
show (implicitly) that FXOR is complete;3 however, their protocol focuses on achieving adaptive security
and, as such, depends on a hardness assumption that is not known to be implied by sh-OT assumption. Our
new protocol achieves static security using a novel non-black-box usage of the minimal sh-OT assumption.

We also give a new commitment protocol in the FCC-hybrid model (Theorem 3). FCC is a less sophis-
ticated functionality than FXOR; consequently, our protocol using FCC is more involved. We first define an
intermediate commitment functionality called FEXTCOM which captures the requirements of a standalone-
secure commitment protocol with a straight-line extracting simulator, and we show that this intermediate
functionality can be securely realized using FCC. We then use a technique similar to the

(
2
1

)
commitments

of [NV06] to show that FEXTCOM can be used to obtain a full-fledged FCOM protocol. Interestingly, both of
these protocols require only the existence of one-way functions.

Dealing with reactive functionalities. Our next main technical contribution is to develop tools for classi-
fying and reasoning about arbitrary reactive functionalities. We model reactive functionalities as finite-state
automata, and initiate an automata-theoretic analysis of their behaviors. More specifically, we identify the
states of an automaton which are cryptographically non-trivial, a notion that we define in terms of secure
protocols but that also has a purely combinatorial characterization.

Given the appropriate automata-theoretic definitions, we are then able to show that a reactive function-
ality can only be non-trivial for two reasons:

• having input/output behavior (in a single round) like that of a non-trivial SFE, or
• keeping relevant information about a party’s inputs “hidden” in its memory between rounds

More formally, we show in Theorem 4 that every non-trivial reactive functionality can either be used to ob-
tain some non-trivial SFE (i.e., the first case above), or can be used to achieve the commitment functionality
FCOM (the canonical functionality which exemplifies the second case above). In this way, we reduce the
zero-one law for reactive functionalities to the zero-one law for SFE functionalities, since FCOM is complete.
We note that formally defining non-trivial usage of internal memory by a reactive functionality is very chal-
lenging, and comprises the bulk of our contributions for reactive functionalities. However, as a result of our
new analysis, we obtain the first complete combinatorial characterization for triviality or completeness of
arbitrary reactive functionalities.

3They show that the coin-tossing functionality, for which there is an elementary protocol using FXOR, is complete.
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3 Preliminaries
Model and Security Definition. Our security definitions are grounded in the framework of Universal
Composable (UC) security [C01], with which we assume the reader has slight familiarity. For concreteness
we consider the model used in [PR08], which in turn is based on that in [P05]. However, we emphasize that
very few specifics of the model (including ideal functionalities, an interactive environment and simulation
based security) are important for the results.

The UC model allows a large class of MPC functionalities, not all of which are “natural.” For instance,
a functionality that announces the identities of the corrupt parties is not natural; a reactive functionality
which introduces a race condition depending on the order in which it receives inputs from parties is also
not natural. Following the convention in all previous works (to the best of our knowledge), we do not
consider such functionalities. We formally define the exact class of functionalities considered in this work
in Appendices B and E. We note that the functionalities in this class do not offer a guarantee of output
fairness; that is, they allow the adversary to control the delivery of outputs.

We write F v G if there is a protocol that securely realizes F in the “G-hybrid model;” see [C01]
or [P05] for a formal definition. In the G-hybrid model, the parties in the protocol can interact with any
number of (asynchronous) copies of G, and can access G in any “role”. This second convention is crucial to
our results (see Section 7). We consider only efficient protocols, but make a notational distinction between
unconditionally (statistically) secure protocols (denoted by vSTAT) and protocols whose security depends
on a computational assumption (denoted by vPPT). As is standard, we require security against active (i.e.,
malicious) adversaries. However, as we point out in Section 7, our results extend to a stronger definition
where security is required against both active and semi-honest adversaries.4

By default, we also allow protocols access to a communication channel. Following [PR08], we consider
the natural model of a private communication channel, in which parties can send fixed-length messages (with
the adversary controlling delivery). The choice of public vs. private channel is not crucial to our results (see
Section 7).

All results in this work are restricted to static corruption (where the adversary has to corrupt any parties
before the protocol begins). In fact, we leave open the possibility that our main theorem breaks down in the
case of adaptive corruption.

The sh-OT assumption. The primary computational assumption we consider is the existence of a protocol
for FOT secure against semi-honest, PPT adversaries (sh-OT assumption, for short). It is possible to express
this assumption using the definition of UC security restricted to semi-honest adversaries (in both the real and
the ideal executions). However, we point out that the traditional (standalone) security definition is equivalent
to the UC security definition, since the simulation required by semi-honest security does not, and need not,
extract the inputs of the corrupt players; it simply uses the input given by the environment.

Some of our protocol constructions additionally rely on statistically binding (standalone secure) com-
mitment schemes, pseudorandom generators, (standalone secure) witness-indistinguishable proofs or zero-
knowledge proofs of knowledge for NP. All of these primitives have well-known constructions assuming the
existence of one-way functions [N91, HILL99, G01]. One-way functions are in turn implied by the sh-OT
assumption [IL89].

4 Zero-One Law for Non-Reactive Functionalities
In this section we prove the zero-one law for the special case of non-reactive finite functionalities, also
known as secure function evaluation (SFE) functionalities. An SFE functionality is parameterized by a pair
of functions (fA, fB) with input domains X × Y , where X and Y are finite sets. The functionality waits
to receive input x ∈ X from Alice and y ∈ Y from Bob, then outputs fA(x, y) to Alice and fB(x, y) to

4Note that when considering semi-honest adversaries, the simulator must also be semi-honest.
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Bob. In Appendix B we give a complete formal definition of SFE functionalities, which explicitly models
adversarial control over output delivery, as is standard in the UC framework.

Three “Canonical” Non-Reactive Functionalities. Our main characterization in this section demon-
strates that an SFE functionality can be non-trivial for only one of three simple reasons, as outlined in
Section 2. The following three SFE functionalities exemplify the three different cases, respectively:

FXOR (exclusive-or): Alice gives input x ∈ {0, 1} and Bob gives input y ∈ {0, 1}. Both parties receive
output x⊕ y.

FCC (simple cut-and-choose): Alice gives input x ∈ {0, 1} and Bob gives input y ∈ {0, 1}. If y = 0, then
both parties receive output x. If y = 1, then both parties receive output 2. Intuitively, Bob decides
whether to learn Alice’s bit, and Alice learns Bob’s choice.

FOT (oblivious transfer): Alice gives inputs x0, x1 ∈ {0, 1} and Bob gives input y ∈ {0, 1}. Bob receives
output xy and Alice receives no output.

We show that these three fundamental properties exhaustively characterize non-triviality, as follows:

Theorem 1. Let F be an SFE functionality. Then F is non-trivial if and only if FXOR vSTAT F or FCC vSTAT

F or FOT vSTAT F .

Proof Sketch. One direction of the proof follows directly from the characterization of trivial SFE function-
alities from [PR08]. Each of FXOR, FCC, and FOT is unconditionally non-trivial.

We give an overview of the proof of the other direction, deferring the full details to Appendix B.
Kraschewski and Müller-Quade [KMQ08] identify a 2× 2 minor within the function table of an SFE, which
generalizes the (symmetric-output) boolean OR functionality 0 1

1 1
that is known to be complete. They show

that an SFE with such a minor can be used to construct an unconditionally UC-secure protocol for FOT.
Similarly, we also identify another important 2 × 2 minor called a generalized-CC minor. Intuitively, a

minor is a generalized-CC minor if one party can choose whether to learn the other’s input, and this choice
is made public in the function’s output. We show that if F has such a minor, then the protocol in which the
parties simply restrict their inputs to that minor while accessing F is a UC-secure protocol for FCC.5

Finally, if F does not have either kind of 2 × 2 minor mentioned above, then we show that F must
simply be (equivalent to) a function that takes inputs x ∈ X from Alice and y ∈ Y from Bob, then outputs
(x, y) to both parties. If max{|X|, |Y |} ≥ 2, then there is an elementary UC-secure protocol for FXOR in
the F-hybrid model. Otherwise, F is trivial: the protocol in which one party simply sends their input to the
other party is a UC-secure (plain) protocol for F .

Completeness of the Three Canonical Non-Reactive Functionalities. Since FOT is unconditionally
complete (even with respect to UC secure protocols) [K88, IPS08], and the commitment functionality FCOM

is complete under the sh-OT assumption [CLOS02], it suffices to prove the following two theorems:

Theorem 2. If the sh-OT assumption is true, then FCOM vPPT FXOR.

Proof Sketch. We first observe that the coin-tossing functionalityFCOIN
6 has an elementary, unconditionally

secure protocol in the FXOR-hybrid model. Thus it suffices to show that FCOM vPPT FCOIN. The well-known
CLOS result [CLOS02] proves exactly this; however, their focus was on achieving adaptive security, and
their protocol relied on a stronger computational assumption than the sh-OT assumption. Thus we must use
an entirely different approach for achieving FCOM (with static security) from FCOIN. We give an overview of
our protocol, whose complete description and security proof are given in Appendix C.

5Note that, in general, restricting inputs to a minor of F does not give a secure protocol (against malicious adversaries) for the
SFE corresponding to that minor, since a malicious adversary may send inputs to F outside of the prescribed minor.

6FCOIN is a functionality which, upon activation, samples an unbiased coin b← {0, 1} and outputs it to both parties.
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Suppose ψsh is the semi-honest protocol for FOT guaranteed by the sh-OT assumption. We suppose that
the sender in ψsh provides two bits (x0, x1), the receiver provides a bit y, and the receiver learns xy.

Our commitment protocol is as follows, when Alice is committing to b ∈ {0, 1}. First, both parties
use FCOIN to generate a sequence of random coins σ. The sender Alice and receiver Bob interact in an
instance of ψsh, with Alice using inputs (x0 = 0, x1 = b), and Bob using input y = 0. To ensure that
both parties provide inputs of the required form, we “compile” the ψsh subprotocol using a variant of the
standard GMW compiler [GMW87]. Unlike the GMW compiler, at each step we make the parties give
a witness-indistinguishable proof that either they are following the protocol honestly with the appropriate
inputs, or the public coins σ are from a pseudorandom distribution. In the reveal phase, Alice gives a
witness-indistinguishable proof that either σ was from a pseudorandom distribution, or all her messages in
the ψsh subprotocol were consistent with her having input x1 = b.

Intuitively, in the real interaction (where σ is generated honestly using FCOIN), the GMW compilation
ensures that both parties are executing the ψsh subprotocol honestly and appropriately. Thus, Bob learns
nothing about b in the commit phase, and Alice can only open the commitment to the value of b that she
used in the commit phase.

However, when the simulator is corrupt it can choose σ from a pseudorandom distribution. If Alice is
corrupt, the simulator can act as Bob using input y = 1 to the ψsh subprotocol, while still giving convincing
GMW proofs. By the correctness and security of the ψsh protocol, the simulator correctly extracts b in the
commit phase, and the simulation is indistinguishable from the real interaction.

If Bob is corrupt, the simulator can give a commitment to 0 in the commit phase, but open it to any value
in the reveal phase (using the clause in the witness-indistinguishable proof related to σ). Thus the simulator
can successfully equivocate to a corrupt Bob.

To show that both of these simulations are sound, we must apply the semi-honest security of ψsh, which
is the most delicate part of the proof, since the simulator exists in the UC setting. We construct a sequence of
hybrid interactions between the real and ideal UC (straight-line) interactions, and show that if any adversary
can distinguish between certain hybrids, then we can construct a corresponding adversary (possibly using
rewinding) which violates the semi-honest security properties of ψsh.

Theorem 3. If one-way functions exist, then FCOM vPPT FCC.

Proof Sketch. In many respects, FCC is a less cryptographically sophisticated functionality than FXOR (we
provide some evidence for this fact in Section 7). Consequently, our protocol for obtaining FCOM from FCC

is more complicated than the one using FXOR. On the other hand, our protocol in the FCC-hybrid model uses
only the assumption of one-way functions, which is weaker than the sh-OT assumption.

The simulator for a UC-secure commitment protocol has two main tasks: (1) to extract the committed
value from a corrupt sender during the commit phase, and (2) to give an equivocal commitment to a corrupt
receiver that can be convincingly opened to any value during the reveal phase. Our construction of a UC-
secure commitment protocol is broken into two major conceptual steps, which tackle these two properties
in a somewhat modular fashion.

We first define an intermediate “extractable commitment” functionality called FEXTCOM. The complete
formulation of FEXTCOM is highly non-trivial, and is contained in Appendix D.1. FEXTCOM succinctly ex-
presses the requirements of a statistically binding, computationally hiding commitment scheme (in the tra-
ditional standalone-secure sense) which also admits a straight-line extracting simulator. We believe that this
method of expressing a combination of standalone and universally composable security properties may be
of independent interest. Using a technique similar in spirit to the

(
2
1

)
-commitments of Nguyen and Vad-

han [NV06], we show that if one-way functions exist, then FCOM vPPT FEXTCOM (Lemma 4).
Thus it suffices to construct a commitment protocol which has a UC extraction property, but only a

standalone-secure hiding property. This commitment protocol is as follows. To commit to a bit b, Alice
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first chooses a random bitstring s and then applies a good linear error-correcting code to obtain a codeword
t. She commits to t using a statistically binding (standalone-secure) commitment protocol. For each bit ti
of t, Alice gives ti as input to FCC, and Bob chooses to learn it with some probability. Recall that in FCC,
Alice learns which bits Bob chose to see. Alice ensures that Bob only learned sufficiently few bits of t so
that some uncertainty about s remains. This remaining uncertainty can be deterministically extracted (as
a linear function of s), and Alice uses it as a one-time pad to mask b. She sends the masked b to Bob to
complete the commitment phase. In the reveal phase, Alice opens the commitment to t, and Bob checks
for consistency with the bits that he learned in the commit phase. The full details and security proof are
provided in Appendix D.2.

Intuitively, the protocol is computationally hiding and statistically binding because the deterministic
extraction of the mask is perfect (using a simple linear function). The only information about the mask is
given in a statistically-binding standalone-secure commitment to t.

However, the simulator provides the interface for FCC to a corrupt Alice. Consequently, the simulator
can see all of Alice’s inputs toFCC, which are the (purported) bits of t. Because Bob has a certain probability
of revealing each one of the bits of t and he verifies them against Alice’s statistically binding commitment
to t, we argue that Alice cannot supply too many incorrect values of to FCC. In particular, Alice cannot give
more incorrect bits than can be corrected by the error correcting code, except with negligible probability.
Thus the simulator can perform a noisy decoding to obtain s and then easily extract b.

5 Classifying Reactive Functionalities
We model reactive functionalities as finite automata. Each state transition is labeled by a tuple in X × Y ×
Z × Z, where X , Y , and Z are finite sets. We require the automaton to be deterministic; that is, for every
state q and every (x, y) ∈ X×Y , there is at most one transition leaving q whose label begins with (x, y). A
transition from q to q′ with label (x, y, s, t) means that upon receiving input x from Alice and y from Bob
in state q, the functionality will deliver output s to Alice and t to Bob, and change to state q′. The formal
definition is given in Definition 8, and it explicitly models adversarial control over output delivery.

As outlined in Section 2, we show that a reactive functionality can be non-trivial only for two simple
reasons: (1) behaving like a non-trivial SFE functionality during a single round, or (2) using its internal
memory in a non-trivial way. Formally defining this second condition requires a careful new automata-
theoretic analysis of reactive behaviors. Intuitively, memory is used in a non-trivial way when some part of
the memory is both hidden (has not yet affected the its external behavior) and meaningful (may eventually
influence the its future external behavior). The commitment functionality FCOM represents the canonical
functionality which uses its internal memory in such a way (between the commit and reveal phases).

Automata-theoretic Characterization. To formally define these intuitive non-triviality conditions, we
develop three new important properties, all defined automata-theoretically.

Say that an input x̂ dominates another input x if (informally) Alice can use x̂ as her input to F in the
first round of interaction, but then convince any environment that she had really used x (Definition 9). In
other words, any behavior that can be induced by sending x to F in the first round can also be induced by
instead sending x̂ and thereafter engaging in some local “translation” protocol. We emphasize that Alice
must perform this translation online, without knowledge of the inputs that the environment will provide in
future rounds. When x̂ dominates x, Alice can use x̂ in place of x in the first round without loss of generality.

The input-output behavior of each state in the functionality naturally defines a corresponding SFE. Take
any SFE and say that x ∼ x′ if Alice inputs x and x′ always induce the same output for Bob. When an SFE
is trivial, then Bob’s output from the SFE always reveals the ∼-equivalence class of Alice’s input (and vice-
versa, exchanging the roles of Alice and Bob).7 We say that the start state of F is simple if its associated

7In fact, this is true whenever the SFE is (isomorphic to) a simultaneous exchange function F(x, y) = (x, y). Thus our protocol
forFCOM (from Theorem 4) which exploits these automata-theoretic properties can also be used when the functionality is comprised
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SFE is a trivial SFE, and if each equivalence class of ∼ (over Alice inputs and Bob inputs) contains some
input that dominates all other inputs in its class (Definition 13).

Intuitively, when the start state is simple, then just by looking at the output from the first round, Bob
can determine the ∼-class of the input Alice used. Consequently, Bob can safely assume that Alice used
the input x that dominates that ∼-class, since x is the input that gives Alice the maximal flexibility over
influencing the functionality’s future behavior. The same is true for Alice determining Bob’s likely input.
Suppose x and y are inputs for Alice and Bob, respectively, which are each maximally dominant for their
∼-equivalence classes. We call the transition from the start state on inputs (x, y) a safe transition (Defi-
nition 14). Intuitively, only such safe transitions are relevant; furthermore, after a safe transition, neither
party has meaningful uncertainty about the other party’s input in the previous round, or the functionality’s
resulting state.

These automata-theoretic properties characterize non-triviality as follows:

Theorem 4. Let F be a deterministic, finite (reactive) functionality. Then the following are equivalent:

1. F is non-trivial.
2. FCOM vSTAT F or G vSTAT F for some non-trivial SFE functionality G.
3. Every state reachable from F’s start state via a sequence of safe transitions is a safe state.

Condition (3) of this theorem can be expressed completely combinatorially, giving the first combinato-
rial characterization of triviality (and thus completeness) for any class of arbitrary reactive functionalities.

Proof Sketch. The full proof is given in Appendix E. We consider all the states of the machine that are
reachable by a sequence of safe transitions; intuitively, these are the only states that are of any significance.
If all such states are simple, thenF has a trivial protocol (Lemma 10). Intuitively, if at each stateF evaluates
a a trivial SFE, and if after each round, both parties have no uncertainty about the next state of F , then the
protocol for F is a straight-forward composition of trivial SFE protocols.

Otherwise, assume that one of the safely reachable states of F is non-simple; for simplicity, assume it is
the start state. If the start state is non-simple because of its input-output behavior, then there is an elementary
protocol which securely realizes that associated SFE in the F-hybrid model. Otherwise, the start state is
non-simple because there exist two inputs for (by symmetry) Alice, say x0 and x1, which are in the same
∼-class, but no Alice input dominates both of {x0, x1}. In other words, any first-round input for Alice will
“bind” her to the behaviors consistent with x0 or to those consistent with x1, but not both.

We formalize this natural connection to commitment by constructing an unconditional commitment
protocol, as follows (Lemma 9). Alice commits to b by sending xb in the first round. The commitment is
perfectly hiding since x0 ∼ x1. To reveal, it suffices for Alice to convince Bob that in the first round she used
an input that dominates xb, since no input can dominate both x0 and x1. We argue that if Alice sends an input
in the first round that doesn’t dominate xb there is a fixed environment that has a probability of forcing F’s
external behavior to be inconsistent with xb, with some probability. Thus our protocol instructs Bob to play
the role of such an environment, sending a sequence inputs to F himself and sending a sequence of inputs to
Alice. Just like in the definition of domination, Alice must report back to Bob her own purported responses
from F , in an online manner, and there is no way to do this with guaranteed consistency if she used input
x1−b in the first round. Bob aborts if these responses or his own responses from F are not consistent with
Alice having sent xb in the first round. By repeating this basic protocol in parallel an appropriate number of
times, Bob can be assured of catching Alice with overwhelming probability if she tries to equivocate.

of simultaneous exchange SFEs instead of trivial SFEs, as observed and applied in [MPR10].
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6 Necessity of the sh-OT Assumption
Finally, we show that the sh-OT assumption is not only sufficient but also necessary for the zero-one law.

Theorem 5. If the zero-one law is true, then the sh-OT assumption is true.

Proof. If the zero-one law holds, then FOT vPPT FXOR, since FXOR is unconditionally non-trivial. FOT has
the property that any protocol that securely realizes FOT (against active adversaries) is also secure against
semi-honest adversaries (see [PR08] for more details). Hence the given FOT protocol is secure against semi-
honest adversaries, in the FXOR-hybrid model. Since FXOR has an elementary plain protocol unconditionally
secure against semi-honest adversaries, we can compose these two protocols to obtain a plain protocol that
securely realizes FOT against semi-honest adversaries.

We remark that we use the sh-OT assumption not only to implement oblivious transfer, but even to im-
plement FCOM using FXOR. The above argument implies nothing about the necessity of the sh-OT assump-
tion for FCOM vPPT FXOR. However, we point out that sh-OT assumption is in fact a necessary condition
for the existence of such a protocol [DG03]. Further, in [MPR10] it is shown that for any functionality F ,
F v FXOR is either unconditionally true/false, or else F vPPT FXOR implies the sh-OT assumption. As
such, our dependence on sh-OT assumption to demonstrate the completeness of FXOR was necessary.

7 Extensions, Limitations, and Open Problems
We discuss several natural extensions of our main theorem:

Strengthening the Reduction. In general, as one tightens the notion of a reduction, fewer functionalities
remain complete. In the extreme, the reduction could be made so restrictive that no functionality reduces to
another. In Appendix F we discuss several possible strengthenings of the vPPT reduction. We first note that
the zero-one law still applies if protocols are given only public channels instead of private channels, or if
security is simultaneously required against both active and semi-honest adversaries.

However, if the reduction notion is strengthened to require security against computationally unbounded
adversaries, then the zero-one law breaks down. Even in the case of SFE functionalities, there exist infintely
many qualitative distinctions among functionalities with respect to this stronger reduction [MPR09].

In Appendix G.1, we show that if the reduction requires parties to use the given ideal functionality with
only fixed roles (i.e., Alice can accessF only in the role of Alice), thenFCOM 6v FCC (indeed, the behavior of
FCC is not symmetric with respect to the two parties). Since FCC is unconditionally non-trivial, the zero-one
law no longer holds under this strong reduction. This impossibility highlights the fact that FCC indeed has
rather low complexity, and justifies our somewhat complicated protocol used to realize FCOM using FCC.

Finally, if the reduction is strengthened to require security against adaptive corruption, we are unsure
whether the zero-one law still holds, even for the class of deterministic, finite functionalities.

Larger Classes of Functionalities. In Appendix G.2 we show that the zero-one law does not extend to
deterministic, unbounded-memory functionalities. Let F be a channel which accepts an arbitrary-length
string x from Alice and sends f(x) to Bob for a fixed function f . Assuming one-way functions exist, we
construct an efficient f that is hard to invert on infinitely many input lengths (thus F is non-trivial), yet
trivially invertible for very long stretches of input lengths (thus F is cryptographically useless by protocols
with certain security parameters). Of course, if one-way functions do not exist, then the sh-OT assumption
is false and the zero-one law must still break down, so the break-down of the zero-one law is unconditional.
While our construction of f is admittedly contrived, this impossibility result does illustrate the necessity of
making some restriction on the class of functionalities. We leave open the problem of identifying the largest
“natural” class of unbounded-memory functionalities that does satisfy the zero-one law.

The other natural way to extend the scope of our results is to consider randomized functionalities. How-
ever, very little is known about randomized functionalities, even in the simplest case of SFE functionalities
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and considering perfect security against computationally unbounded, semi-honest adversaries (for compari-
son, the corresponding characterization for deterministic SFE has been known for 20 years [K89B, B89]).

Optimizing Hardness Assumptions. While our main theorem relies on the minimal sh-OT assumption,
our use of the assumption itself is non-black-box. In both of our new commitment protocols, we use stan-
dalone zero-knowledge and witness-indistinguishable proofs of statements regarding various cryptographic
primitives (which are derived eventually from the sh-OT assumption). We do not know whether such non-
black-box usage of the assumption is necessary, although it appears that a fundamentally different approach
would be required to avoid the use of interactive proofs.
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[C87] Claude Crépeau. Equivalence between two flavours of oblivious transfers. In Carl Pomerance,
editor, CRYPTO, volume 293 of Lecture Notes in Computer Science, pages 350–354. Springer,
1987.

[C01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Electronic Colloquium on Computational Complexity (ECCC) TR01-016, 2001. Previous ver-
sion “A unified framework for analyzing security of protocols” availabe at the ECCC archive
TR01-016. Extended abstract in FOCS 2001.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. Report 2001/055,
Cryptology ePrint Archive, July 2001. Extended abstract appeared in CRYPTO 2001.

[CK89] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy (extended abstract). In
STOC, pages 62–72. ACM, 1989.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally compos-
able two-party computation without set-up assumptions. In Eli Biham, editor, EUROCRYPT,
volume 2656 of Lecture Notes in Computer Science. Springer, 2003.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party computation. In Proc. 34th STOC, pages 494–503. ACM, 2002.
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A Related Work
Some of the earliest works in secure multi-party computation already established that under reasonable com-
putational assumptions, all functionalities are realizable [Y86, GMW87].8 In our parlance, this would sug-
gest that every functionality has the same cryptographic complexity — namely, being trivial and complete.
This is indeed the case (under those computational assumptions), if we restrict to security against semi-
honest adversaries or standalone security (and polynomial time entities) as was done in [Y86, GMW87].

However, shortly afterwards, a finer study of cryptographic complexity emerged, by using stronger se-
curity notions. This strengthening was by removing computational restrictions. In the computationally

8Many of the results in secure multi-party computation, including [GMW87], address the setting of more than two parties. In
this work we restrict our attention to the 2-party setting.
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unbounded setting (a.k.a information theoretic or statistical security setting), not all functionalities are real-
izable (or “trivial”), and hence it becomes possible to distinguish the complexity of functionalities as trivial
and complete (and more generally, to consider degrees of various functionalities).

One of the earliest, and most important results along this line is that SFE functionality of Oblivious
Transfer (OT) [R81, EGL85, C87] is complete [K88], unconditionally.9 All subsequent completeness results
crucially rely on this result. These include the characterization of complete asymmetric SFE functionalities
[K00] and general SFE functionalities [KMQ08].

However much of the initial progress, apart from the completeness of OT, was in the context of security
against semi-honest (a.k.a honest-but-curious, and passive) adversaries. Further — and this has been true
for almost all the prior work discussed here — only non-reactive (a.k.a secure function evaluation, or SFE)
functionalities were considered. Building on early work by [CK89, K89B, B89] (who consider the case of
perfect security), recently [MPR09] characterized realizable symmetric10 SFEs. Independently, [KMQR09]
extended this characterization to general SFEs. [K91, K00] characterize complete symmetric and asymmet-
ric SFEs. For symmetric SFEs, restricted boolean functions, [KKMO00] show a zero-one law, that every
such functionality is either trivial or complete.

Another significant progress has been in the setting of standalone security. When considering active
corruption, composability is significant, and the results in the standalone setting typically do not extend
to the UC setting.11 Nevertheless, studying standalone security does provide important insight into the
cryptographic complexity of functionalities. In particular, [BMM99] provided a zero-one law that if any
non-trivial asymmetric SFE is securely realizable, then so is every asymmetric SFE. The notion of security
in [BMM99] is weak in that it does not consider composability, and restricts to polynomial time entities;
however it is strong in that a protocol is considered secure only if it is simultaneously secure against both
active and semi-honest corruption. (Our main theorem extends unaltered with this notion of reduction.)
[BMM99] shows that every asymmetric SFE is securely realizable (trivial, in our terminology) if and only
if there is a semi-honest secure protocol for OT, sh-OT. While it bears some similarity with our results,
there are important aspects in which our results provide a very different picture of cryptographic complexity
compared to what [BMM99] obtains by considering standalone security. In particular, under the (widely
believed) cryptographic assumption that a sh-OT protocol does exist, there is only one level of complexity
for all asymmetric SFE functionalities (i.e., all are trivial) by [BMM99], where as in our picture, even
restricted to asymmetric SFEs, there are two distinct complexity levels (trivial and complete), no matter
what computational assumptions are made.

We remark that [HNRR06] extends results of [BMM99] beyond constant-sized functionalities (but still
restricted to asymmetric SFE functionalities); we observe that on extending beyond constant-sized function-
alities, like for [HNRR06], for us too the collapse of the complexity levels is not comprehensive. In fact, in
our case, when considering non-constant-sized SFE functionalities, we can unconditionally demonstrate the
existence of SFE functionalities which are neither trivial nor complete. We leave further exploration of this
space for future work.

The introduction of the UC model, as a culmination of a long line of work on composable security, gave a
whole new way to understand the cryptographic complexity of functionalities. Right from the beginning, un-
conditional impossibilities (or non-trivial functionalities) were observed [C01, CF01], which was extended
to a large class of SFE functionalities in [CKL03]; subsequently [PR08] provided an exact characterization
of all trivial functionalities (as “splittable” functionalities).

9The protocol in [K88] is not UC-secure, though an extension presented in [K89A] is likely to be. The construction was
significantly simplified, and proven secure in the UC setting in [IPS08].

10In a symmetric SFE, both parties receive the same output f(x, y), where x, y stand for their inputs. In an asymmetric SFE
only one party receives the output (and the other party is given no output). A general SFE provides two, possibly different, outputs
fA(x, y) and fB(x, y) to the two parties.

11Some important exceptions are the key completeness results in information theoretic setting, like the ones in [K88] and [K00].
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In the computationally unbounded setting [MPR09] showed that there is an infinite hierarchy of increas-
ing levels of cryptographic complexity even among symmetric SFE functionalities, as well as functionalities
with incomparable complexities. However, this does not give any indication of the complexity landscape
in the computationally bounded setting. In [PR08] it was conjectured that under some standard crypto-
graphic assumptions, there should be only two levels of complexity in the computationally bounded setting.
Our main result is a sharp resolution of this conjecture, by giving a necessary and sufficient complexity
assumption under which the conjecture is true.

Under complexity assumptions, it was already known that some functionalities which are not complete in
the computationally unbounded setting become complete in the computationally bounded setting. In partic-
ular, [CLOS02] provided the first such result, that the “coin-tossing” functionality is complete, assuming the
existence of enhanced trapdoor permutations and dense cryptosystems. The approach in [CLOS02], follow-
ing that of [GMW87], is to note that if a sh-OT protocol exists, then the commitment functionality (which is
a reactive functionality) is complete; then the commitment functionality is reduced to the coin-tossing func-
tionality under the computational assumptions described above. Our approach follows [GMW87, CLOS02]
in that to establish the completeness of a given functionality, we need only reduce the commitment func-
tionality to it. However, our reductions are much more general than that in [CLOS02] in that we can reduce
commitment to any non-trivial (deterministic, constant-sized) functionality. Secondly, we rely only on the
minimal assumption (existence of a sh-OT protocol); for the completeness of the coin-tossing functionality,
such a result was obtained independently by [DNO09].

We point out that all the above mentioned prior results, except [PR08], are restricted to SFE function-
alities, where as an important contribution of this work is to develop tools and techniques for analysing
reactive functionalities. On the other hand, the current set of results do share some restrictions common
to prior work: for most part, we consider the complexity of deterministic functionalities (the exceptions in
prior work being [PR08] and the semi-honest security results of [K00]); secondly we consider only static
corruption (a notable exception in prior work being [CLOS02]).

B Non-Reactive Functionalities
B.1 Definitions
A secure function evaluation (SFE) functionality F is fully specified by a pair of functions (fA, fB) over
a finite input domain X × Y . The behavior of F as an ideal functionality is defined formally in Figure 2.
We emphasize that an SFE functionality provides no guarantee about output fairness — the adversary is in
complete control over the delivery of outputs.

1. Wait for input x ∈ X from Alice and input y ∈ Y from Bob.
2. If Alice is corrupt, then send (OUTPUT, fA(x, y)) to the adversary; if Bob is corrupt, then send

(OUTPUT, fB(x, y)) to the adversary; otherwise, send OUTPUT to the adversary.
3. On input DELIVER from the adversary, or if neither party is corrupt, send fA(x, y) to Alice and
fB(x, y) to Bob.

Figure 2: Semantics of the SFE functionality F = (fA, fB)

Definition 1. Let F = (fA, fB) be a 2-party SFE. We say that x is a redundant input for Alice if there exists
x′ 6= x such that:

fA(x, y) 6= fA(x, y′)⇒ fA(x′, y) 6= fA(x′, y′) and fB(x, ·) ≡ fB(x′, ·).

That is, by changing her input from x to x′, Alice learns no less about Bob’s input, but Bob’s output is
unaffected. We define redundancy for Bob’s inputs symmetrically.
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It is easy to see that it is never in the best interests of a malicious party to supply a redundant input.

Definition 2. Let F = (fA, fB) and G = (gA, gB) be 2-party SFEs. We say that F and G are isomorphic if
G can be obtained from F via repeated applications of the following operations:

• Adding or removing a redundant input,
• Injectively re-labeling a party’s input domain,
• Injectively re-labeling the outputs of fA(x, ·) for any x, or of fB(·, y) for any y,
• Reversing the roles of Alice and Bob.

It is easy to see that if F and G are isomorphic, then F can be securely realized in the G-hybrid model
(and vice-versa). Thus, we hereafter consider only SFE functionalities that have all redundant inputs re-
moved.

B.2 2× 2 Minors
Our primary classification of SFE functionalities is combinatorial, and relies on identifying crucial 2 × 2
minors in the function table of the SFE.

Definition 3. Let F = (fA, fB) be a 2-party SFE. We say that F has a generalized CC-minor at {x, x′} ×
{y, y′} if F has the following form:

fA y y′

x a a
x′ b c

fB y y′

x h j
x′ i k

where b 6= c and h 6= i and j 6= k

or the symmetric condition with the roles of Alice and Bob exchanged.

In a generalized CC-minor, Alice chooses input x if she wants no information about Bob’s input (y or
y′), and chooses input x′ if she wants to receive Bob’s input. Bob learns which option Alice chose.

We call the following (symmetric-output) function the symmetric cut-and-choose function FCC:

fA = fB 0 1
0 0 0
1 1 2

It is the canonical function that contains a generalized CC-minor, and it plays an important role in our results.

Definition 4 ([KMQ08]). Let F = (fA, fB) be a 2-party SFE. We say that F has a generalized OR-minor
at {x, x′} × {y, y′} if F has the following form:

fA y y′

x a a
x′ b c

fB y y′

x h j
x′ h k

where b 6= c or j 6= k

Lemma 1 ([KMQ08]). If F is a 2-party SFE functionality that contains a generalized OR-minor after re-
moving all redundant inputs, then F is complete under vSTAT reductions.

In fact, the lemma proven by Kraschewski and Müller-Quade [KMQ08] is stronger, giving a complete
characterization of completeness against computationally unbounded adversaries. That is, they prove that
F is vSTAT-complete if and only if it contains a generalized OR-minor. We note that the protocol and
simulator in their reduction are both efficient when F has constant size, but the security holds even against
computationally unbounded adversaries. Of course, in this work we show that many other functionalities
are also complete under the vPPT reduction.
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Definition 5. F = (fA, fB) is a symmetric exchange function if F is isomorphic to the symmetric function
F(x, y) = (x, y) for some input domain X × Y .

In a symmetric exchange function, each party learns the other party’s input (the function’s output also
includes that party’s own input, which it already knows). The cryptographic non-triviality of symmetric
exchange functions is due to the fact that each party’s input is chosen independently of the other party’s
input.

B.3 Combinatorial Classification
We now prove the first characterization of SFE functionalities, using two technical lemmas:

Lemma 2. Let F = (fA, fB) be an SFE functionality. If F has a generalized CC-minor and no generalized
OR-minor, then FCC vSTAT F .

Proof. Suppose F has a generalized CC-minor at {x, x′}×{y, y′}. We will show that the protocol in which
parties simply restrict their inputs to this 2 × 2 minor is a UC-secure protocol for computing that minor.12

If the output from F is not consistent with the party’s input and one of the two allowed inputs for the other
party, then we abort. Since every generalized CC-minor is isomorphic to symmetric CC, the claim will be
established.

Suppose the function table of F is as follows for the CC-minor:

fA y y′

x a a
x′ b c

fB y y′

x h j
x′ i k

where b 6= c, h 6= i, and j 6= k

We first consider the case where Alice is corrupt. If Alice provides input x or x′, then the simulator also
gives the same input in the ideal world, and returns the output to Alice. Otherwise, suppose Alice sends
some other input x′′:

fA y y′

x a a
x′ b c
x′′ p q

fB y y′

x h j
x′ i k
x′′ r s

where b 6= c, h 6= i, and j 6= k

We consider several cases, depending on the values of p, q, r, s:

• If r 6∈ {h, i} and s 6∈ {j, k}, then honest Bob will always abort in the real world. The simulator sends
input x′ in the ideal world. The simulator can determine from its output whether Bob’s input was y or
y′, and simulate either output p or q to Alice accordingly, and finally abort.
• If [r = h and s = j and p 6= q] or [r = h and s 6= j] or [r 6= h and s = j]. then {x, x′′} × {y, y′} is

a generalized OR-minor in F . This is not possible in F .
• If r = h and s = j and p = q, then the simulator sends input x in the ideal world. Bob receives the

same output as in the real world, and the simulator gives Alice output p = q.
• If r = i and s = k, then the simulator sends input x′ in the ideal world. Bob receives the same output

as in the real world, the simulator can determine from its output whether Bob’s input was y or y′, and
simulate either output p or q to Bob, accordingly.

12Note that for an arbitrary F , it does not necessarily follow that restricting inputs is a secure protocol for evaluating that minor,
since adversaries may carefully choose other inputs to send to F .
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• If r = i and s 6∈ {j, k}, then Bob will abort in the real world if his input was y′. The simulator sends
input x′ in the ideal world. If Bob’s input is y, then Bob receives the same output as in the real world.
The simulator can determine from its output whether Bob’s input was y or y′, and simulate either
output p or q to Bob, accordingly. The simulator aborts if Bob’s input is y′.

The definition of generalized CC-minor is symmetric with respect to y and y′, so all other cases are obtained
by symmetry.

The other case to consider is when Bob is corrupt. Similarly, the simulation is trivial when Bob uses
either y or y′. Otherwise, suppose Bob uses some other input y′′:

fA y y′ y′′

x a a p
x′ b c q

fB y y′ y′′

x h j r
x′ i k s

where b 6= c, h 6= i, and j 6= k

We again consider several cases:

• If p 6= a and q 6∈ {b, c}, then similar to above, Alice will always abort in the real world. The simulator
sends input y in the ideal world. It can determine from its output whether Alice’s input was x or x′,
and simulate either output r or s to Bob accordingly, and finally abort.

• If p = a and q = b, then the simulator sends input y in the ideal world. Alice receives the same output
as in the real world. The simulator can determine from its output whether Alice’s input was x or x′,
and simulate either output r or s to Bob, accordingly.

• If p = a and q = c, the simulation is identical to the previous case, except the simulator sends input
y′ in the ideal world.
• If p = a and q 6∈ {b, c}, then Alice aborts in the real world if her input was x′. The simulator sends

input y in the ideal world. Alice receives the same output as in the real world if her input was x. The
simulator can determine from its output whether Alice’s input was x or x′, and simulate either output
r or s to Bob, accordingly. The simulator aborts if Alice’s input was x′.
• If p 6= a and q = b, then Alice aborts in the real world if her input was x. Similar to above, the

simulator sends input y in the ideal world, simulates the appropriate output for Bob, and aborts if
Alice’s input was x.

• If p 6= a and q = c, then the simulation is identical to the previous case, except the simulator sends
input y′ in the ideal world.

Lemma 3. If F = (fA, fB) has no generalized CC-minor and no generalized OR-minor, then F is a sym-
metric exchange function.

Proof. If F is not a symmetric exchange function, then different inputs to F for (without loss of gen-
erality) Alice let her learn different distinctions among Bob’s inputs. That is, for some x, x′, y, y′, we
have: fA(x, y) = fA(x, y′) and fA(x′, y) 6= fA(x′, y′). Now no matter how fB behaves on inputs
{x, x′} × {y, y′}, that 2× 2 minor is either a generalized CC-minor or generalized OR-minor.

Finally, we prove our main classification of SFE functionalities:

Theorem 1 (restated). Let F be an SFE functionality. Then F is non-trivial if and only if FXOR vSTAT F or
FCC vSTAT F or FOT vSTAT F .
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Proof. If F contains no generalized OR-minor, but contains a generalized CC-minor, then FCC vSTAT F
(by Lemma 2). Otherwise, if F contains neither a generalized CC-minor nor a generalized OR-minor, then
F is a symmetric exchange function (Lemma 3). Suppose F is (isomorphic to) the symmetric function
F(x, y) = (x, y), where F has input domain X × Y . If min{|X|, |Y |} < 2, then F is trivial, by the
unconditional, complete characterization of UC triviality from [PR08] (F is trivially realizable via a protocol
in which one party simply sends their input to the other party).

Otherwise, suppose min{|X|, |Y |} > 2. Then let x0 6= x1 ∈ X and y0 6= y1 ∈ Y . A secure protocol
for FXOR in the F-hybrid model is as follows: On input a ∈ {0, 1}, Alice sends xa; on input b ∈ {0, 1},
Bob sends input yb. Both parties obtain output F(xa, yb) = (xa, yb) and output a ⊕ b. Alice aborts if she
observes that Bob did not use y0 or y1 as his input, and likewise Bob aborts if he observes that Alice did not
use x0 or x1 as her input. It is straight-forward to see that this protocol is UC-secure.

C Obtaining FCOM from FXOR

In this section, we show how FCOM can be directly realized using FXOR. We first observe that FCOIN vSTAT

FXOR via an elementary and well-known protocol. Thus we focus on proving that FCOM vPPT FCOIN.

Parameters. Our construction depends on the sh-OT assumption, so letψsh denote a semi-honest protocol
for OT.

sh-OT assumption implies the existence of one-way functions, and our construction also relies on the
following components, each of which exists given one-way functions alone:

• Let Com be a statistically binding, standalone-secure commitment scheme with a non-interactive
reveal phase (for instance, Naor’s commitment scheme [N91]).
• Let G : {0, 1}k → {0, 1}2k be a pseudorandom generator.
• A standalone-secure zero-knowledge proof of knowledge protocol for NP statements.
• A standalone-secure witness-indistinguishable proof for NP statements.

The protocol. We define the following interactive protocol ρ in the FCOIN-hybrid model. The security pa-
rameter is κ. Suppose the ψsh protocol usesR(κ) bits of randomness when executed with security parameter
κ.

1. (Commit phase.) Both parties obtain random coins σA, σB ∈ {0, 1}2κ from FCOIN.

2. On input (COMMIT, b), for b ∈ {0, 1}, Alice first commits to b using the Com protocol.

3. Alice and Bob both choose random coin shares, rA, rB ← {0, 1}R(κ) respectively, for use in the ψsh
protocol. Each party commits to its respective coins using the Com protocol.

4. Both parties use a ZK proof of knowledge protocol to prove knowledge of the values underlying their
commitments (for Alice, the commitments to b and rA; for Bob, the commitment to rB).

5. Alice chooses random coins r′B ← {0, 1}R(κ) and sends them to Bob. Bob chooses random coins
r′A ← {0, 1}R(κ) and sends them to Alice.

6. Both parties engage in the OT protocol ψsh, with Alice acting as the sender with inputs x0 = 0 and
x1 = b, and Bob acting as the receiver with input (choice bit) y = 0.

(a) For each of Alice’s turns in the ψsh protocol, suppose that the protocol instructs her to send mes-
sage m. She sends m to Bob and then proves using a witness-indistinguishable proof protocol
the following statement: Either there exists d such that G(d) = σA, or else there exists values
rA and b that are consistent with the commitments to rA and b, and the ψsh protocol prescribes
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that the sender send m when running on input (x0 = 0, x1 = b) and random coins rA ⊕ r′A,
given the ψsh transcript so far.

(b) For each of Bob’s turns in the ψsh protocol, suppose that the protocol instructs him to send mes-
sage m. He sends m to Alice and then proves using a witness-indistinguishable proof protocol
the following statement: Either there exists d such that G(d) = σB , or else there exists coins rB
that are consistent with his commitment to rB , and the ψsh protocol prescribes that the receiver
send m when running on input y = 0 and random coins rB ⊕ r′B , given the ψsh transcript so far.

7. If any of the interactive proofs in the previous steps fail, then the parties abort. Otherwise Bob outputs
COMMITTED.

8. (Reveal phase.) On input REVEAL, Alice sends b to Bob. She then proves using a witness-indistinguishable
proof that either there exists a non-interactive opening of Alice’s Com-commitment from step (2) to
the value b, or else there exists d such thatG(d) = σA. Bob outputs (REVEAL, b) if this proof verifies.

Overview and Motivation. Intuitively, the protocol is for Alice to commit to b in a standalone-secure
commitment scheme, and then use b as an input to the ψsh OT protocol. However, Bob will choose not to
pick up b in the OT subprotocol, so that he is still oblivious to its value.

The rest of the protocol (most importantly steps 3–6) essentially “compiles” the ψsh protocol using
the standard GMW paradigm to enforce that Alice indeed uses b as an input to ψsh, and that Bob indeed
chooses not to pick it up. However, for technical reasons we deviate slightly from the GMW paradigm in
the following ways:

• In step (5), the parties prove knowledge of the commitments to their private inputs to ψsh and their
random-tape shares. This is important because we eventually reduce an adversary running ρ to a
semi-honest adversary running ψsh. For technical reasons, we need to extract inputs and the random
tape share in this step, but a rewinding extraction is sufficient.
• Bob does not prove the standard GMW-style statement in step (6a). Instead, he proves a statement

containing a trapdoor clause related to the public coins σ. This extra trapdoor allows a straight-line
simulator for a corrupt Bob to prove false statements about its interaction using ψsh (by choosing
σ from the range of G and using the trapdoor witness), which is crucial in our subsequent security
reductions.

Finally, in the reveal phase Alice does not simply reveal the standalone-secure commitment to b made
in step (2). Instead, she proves it with a witness-indistinguishable proof that has a “trapdoor” clause re-
garding the public coins σ. This extra clause allows a straight-line simulator for a corrupt Alice to open a
commitment to either value.

Theorem 2 (restated). The protocol ρ is a secure realization of FCOM in the FCOIN-hybrid model.

Proof. We must demonstrate a suitable simulator for any adversary. The construction is trivial in the cases
where both or neither of the parties are corrupt. The correctness of the protocol follows straight-forwardly
from the security properties of the various components used in ρ. We focus on the other two cases, in which
only one party is corrupt.

Simulation when Alice is corrupt. In this case the primary task of the simulator is to extract Alice’s bit
during the commit phase. We construct the simulator via a sequence of hybrid interactions, as follows:

Real interaction: The simulator honestly plays the role of FCOIN and Bob (who has no input) in the ρ proto-
col. This is exactly what happens in the real interaction with Alice.
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Hybrid 1: Same as above, except that the simulator generates coins σB by choosing a random d ∈ {0, 1}κ
and setting σB = G(d). The coins σA remain honestly generated. This hybrid is indistinguishable
from the previous by the pseudorandomness of G.

Hybrid 2: Same as above, except that each time in step (6b), the simulator uses d as a witness to the witness-
indistinguishable proofs. This hybrid is indistinguishable from the previous by the witness indistin-
guishability property of the interactive proof.

To obtain hybrid 3, we now define a sequence of intermediate hybrids which use rewinding simulation.
This is necessary to eventually reduce the indistinguishability of consecutive hybrids to a semi-honest
security guarantee. However, the final hybrid 3 is a straight-line simulator for corrupt Alice.

Hybrid 2a: Same as hybrid 2, except that the simulator uses the (possibly rewinding) knowledge
extractor to extract Alice’s commitments to rA and b from step (4). By the soundness of the
proof of knowledge protocol and the statistical binding property of Com, these values are with
overwhelming probability the only values to which the commitments could be opened. This
hybrid is indistinguishable from the previous by the security of the ZK proof scheme used in
step (4).

Hybrid 2b: Same as hybrid 2a, except that the simulator honestly chooses random coinsR ∈ {0, 1}R(κ)

and sends r′A = R ⊕ rA in step (5), where rA is the value extracted in the previous step. This
interaction is distributed exactly as the previous hybrid.

Hybrid 2c: Same as hybrid 2b, except that each time in step (6a), the simulator computes the next-
message function of ψsh for Alice, given input x0 = 0, x1 = b, random tape R, and the ψsh
transcript so far. If this next message does not match the m given by Alice in step (6a), then the
simulator aborts. This hybrid is indistinguishable from the previous by the soundness property
of Alice’s interactive proofs in step (6a).13 Note that hereafter we can be sure that the corrupt
Alice is executing ψsh honestly.14

Hybrid 2d: Same as hybrid 2c, except that each time in step (6b), the simulator uses y = 1 instead
of y = 0 as its input to the ψsh protocol (still executing the protocol honestly). This hybrid is
indistinguishable from the previous by the semi-honest security of ψsh, since Alice’s interactions
in the ψsh protocol can be simulated by a semi-honest adversary.
Additionally, by the correctness of the ψsh protocol, the simulator obtains x1 = b as output from
this subprotocol. Recall that by the statistical binding property of Com, and the soundness of
the interactive proofs in step (6a), this value b is with overwhelming probability the only value
to which the commitment in step (2) can be opened.15

Hybrid 2e: Same as hybrid 2d, except that the simulator does not extract Alice’s inputs b and rA in
step (4), chooses r′A uniformly in step (5), and does not compare Alice’s messages in step (6a)
to the “correct” value prescribed by ψsh. This hybrid is indistinguishable from the previous by
applying the arguments in the previous three hybrids in reverse.

Hybrid 3: Exactly the same as hybrid 2e. Overall, this hybrid differs from hybrid 2 only in that the simulator
uses y = 1 as its honest input to the ψsh protocol instead of y = 0. It then learns the value of b.

13Only with negligible probability is σA in the range of the pseudorandom generator G. Thus, that clause of the WI proof is
false, and the soundness property implies the correctness of the other clause being proved.

14Here it is important that Alice is executing ψsh honestly on honestly sampled random tape R. In other words, it is not enough
that Alice’s random tape be randomly distributed, since she may be able to sample with some trapdoor. We must have Alice execute
the protocol on a random tape that was sampled entirely honestly.

15The simulator has already extracted b previously in step (4), but subsequent hybrids will not perform such an extraction.
Subsequent hybrids will, however, obtain b from the ψsh subprotocol.
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Although hybrids 2a through 2d used rewinding simulation (to reduce a property to the semi-honest
security of ψsh), hybrid 3 itself uses no rewinding.

Hybrid 3 defines our final simulator. After learning the value of b after step (6), the simulator sends
(COMMIT, b) to FCOM in the ideal world. Recall that this extracted value of b is with overwhelming proba-
bility the only value to which the commitment in step (2) can be opened. Then, since σA is not in the pseudo-
random distribution except with negligible probability, and by the soundness of the witness-indistinguishable
proof in step (8), b is with overwhelming probability the only value for which Alice can make Bob output
(REVEAL, b) in the real-interaction reveal phase.

We see that our simulation is indistinguishable from the real interaction, as desired.

Simulation when Bob is corrupt. In this case the primary task of the simulator is to give an equivo-
cal commitment that can be opened to either value. We construct the simulator via a sequence of hybrid
interactions, as follows:

Real interaction: We consider an interaction in the ideal world with a variant of FCOM which reveals b in the
commit phase. When receiving (COMMITTED, b) fromFCOM, the simulator for Bob honestly simulates
FCOIN and the behavior of Alice on input b in the commit phase of ρ. When receiving (REVEAL, b)
from FCOM, the simulator honestly simulates the behavior of Alice in the reveal phase of ρ. The
outcome of this interaction is identical to the real interaction.

Hybrid 1: Same as above, except that the simulator generates σA by choosing a random d ∈ {0, 1}κ and
setting σA = G(d). This interaction is indistinguishable from the previous hybrid by the pseudoran-
domness of G.

Hybrid 2: Same as above, except that in step (8) and each time in step (6a), the simulator uses the witness d
for the witness-indistinguishable proof. This interaction is indistinguishable from the previous hybrid
by the witness indistinguishability of the interactive proof used in step (8).

Hybrid 3: Same as above, except that the simulator commits to 0 in step (2). However, the simulator will
still use b as an input to the ψsh subprotocol. Since the opening of this commitment is never used (as a
witness in any of the interactive proofs), this interaction is indistinguishable from the previous hybrid
by the standalone hiding property of Com.

Hybrid 4: Same as above, except that the simulator executes step (6) using x0 = 0, x1 = 0 as inputs to the
ψsh subprotocol. This interaction is indistinguishable from the previous hybrid by the semi-honest
security of ψsh. We sketch the sequence of intermediate hybrids between hybrid 3 and 4; the formal
details closely follow the techniques applied earlier in this proof, and are omitted:

◦ Starting from hybrid 3, first, let the simulator extract rB from Bob in step (4), possibly by
rewinding.

◦ Next, let the simulator choose r′B = R⊕ rB (in step (5)) for an honestly sampled R.

◦ Next, let the simulator abort if Bob sends a message in step (6b) that is not prescribed by the ψsh
protocol on input y = 0 and random tape R.

◦ Now, let the simulator change its input to ψsh from x1 = b to x1 = 0. Since Bob is interacting
honestly within the ψsh protocol, this difference is indistinguishable by the sender’s semi-honest
privacy guarantee of ψsh.

◦ Finally, let the simulator “roll back” these first three changes in reverse order, resulting in the
final hybrid 4.
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Hybrid 4 defines our final simulation. Note that since the hybrid 4 simulator does not use b until the
reveal phase (i.e., the simulated commit phase is completely independent of b), this simulator is a valid
simulator in the ideal interaction with FCOM (in which it does not receive b from FCOM in the commit phase).
We see that the simulation is indistinguishable from the real world interaction, as desired.

D Obtaining FCOM from FCC

We first define an intermediate functionality which we call extractable commitment. It captures the require-
ments of a statistically binding, computationally (standalone) hiding commitment protocol with a straight-
line extracting simulation.

D.1 Extractable Commitment
We start off by introducing some convenient terminology.

Definition 6. A protocol is a syntactic commitment protocol if:

• It is a two phase protocol between a sender and a receiver (using only plain communication channels).
• At the end of the first phase (commitment phase), the sender and the receiver output a transcript τ .

Further the sender receives an output γ (which will be used for opening the commitment).
• In the reveal phase the sender sends a message γ to the receiver, who extracts an output value

opening(τ, γ) ∈ {0, 1}κ ∪ {⊥}.

In the above description, as is implicit in all our protocol specifications, the parties may choose to abort
at any point in the protocol.

Definition 7. We say that two syntactic commitment protocols (ωL, ωR) form a pair of complementary
statistically binding commitment protocols if the following hold:

• ωR is a statistically binding commitment scheme (with standalone security).
• In ωL, at the end of the commitment phase the receiver outputs a string z ∈ {0, 1}κ. If the the receiver

is honest, it is only with negligible probability that there exists γ such that opening(τ, γ) 6= ⊥ and
opening(τ, γ) 6= z.

Note that ωL by itself is not an interesting cryptographic goal, as the sender can simply send the commit-
ted string in the clear during the commitment phase; however, in defining F (ωL,ωR)

EXTCOM below, we will require a
single protocol to satisfy both the security guarantees.

We define the extractable commitment functionality F (ωL,ωR)
EXTCOM in Figure 3. The functionality is parame-

terized by a pair of complementary statistically binding commitment protocols.
Our main result in this section is that extractable commitment can be used to securely realize full-fledged

commitment:

Lemma 4. If (ωL, ωR) form a pair of complementary statistically binding commitment protocols (and one-
way functions exist), then FCOM vp F (ωL,ωR)

EXTCOM .

Proof. Our protocol uses additional witness-indistinguishable proofs, which are guaranteed to exist if standalone-
secure commitment schemes exist. The protocol uses a “1-out-of-2 binding commitment” scheme, similar
to the notion introduced by Nguyen and Vadhan [NV06].

Our protocol for FCOM is as follows, with security parameter κ. It uses ideal access to 3 independent
instances of F (ωL,ωR)

EXTCOM , which for clarity we will name F0,F1,F2. Bob is identified as the sender in F0, and
the receiver in F1 and F2.
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We name the two parties Sender and Receiver. The functionality’s behavior depends on who is corrupt.

If both Sender and Receiver are honest, the functionality behaves as follows:

1. (Commitment phase.) It accepts (COMMIT, x) from Sender. Then it internally simulates a ses-
sion of ωR (simulating both the sender and the receiver in ωR), with the sender’s input being x.
It gives (TRANSCRIPT, τ, γ) to Sender and (COMMITTED, τ) to Receiver.

2. (Reveal phase.) On receiving the message REVEAL from Sender, it sends (REVEAL, x) to Re-
ceiver.

If Sender is corrupt and Receiver is honest, the functionality does the following:

1. (Commitment phase.) It runs the commitment phase of ωL with Sender, playing the part of the
receiver in ωL, to obtain (τ, z). It sends (COMMITTED, τ) to Receiver and internally records z.

2. (Reveal phase.) It receives (REVEAL, γ) from Sender. If opening(τ, γ) = z, it sends
(REVEAL, z) to Receiver.

If Sender is honest and Receiver is corrupt, the functionality does the following:

1. (Commitment phase.) It accepts (COMMIT, x) from Sender. Then it runs the commitment phase
of ωR with Receiver, playing the sender’s role in ωR, with x as input. It obtains the output (τ, γ)
at the end of this phase, and sends (TRANSCRIPT, τ, γ) to Sender.

2. (Reveal phase.) it sends (γ, x) to Receiver.

(We do not define the behavior of the functionality when both Sender and Receiver are corrupt.)

Figure 3: Functionality F (ωL,ωR)
EXTCOM : Extractable commitment, parameterized by two syntactic commitment

protocols ωL and ωR.

1. (Commit phase, on Alice input (COMMIT, x)) Bob chooses a random string r ← {0, 1}κ and sends
(COMMIT, r) toF0. Alice receives output (COMMITTED, τ0) and Bob receives output (TRANSCRIPT, τ0, γ0).

2. Alice sends (COMMIT, x) to F1. Alice receives output (TRANSCRIPT, τ1, γ1) and Bob receives output
(COMMITTED, τ1).

3. Alice sends (COMMIT, 0κ) to F2. Alice receives output (TRANSCRIPT, τ2, γ2) and Bob receives out-
put (COMMITTED, τ2).

4. Bob sends REVEAL to F0, and Alice receives output (REVEAL, γ0, r). Bob outputs COMMITTED.

5. (Reveal phase, on Alice input REVEAL) Alice sends x to Bob, then uses a WI proof to prove the
following statement S(x, r, τ1, τ2):

There exists γ such that either opening(τ1, γ) = x or opening(τ2, γ) = r.

Bob outputs (REVEAL, x) if the proof verifies.

It is straight-forward to see that the protocol is correct; i.e., simulation is trivial when both parties are
honest. Simulation is trivial when both parties are corrupt, too. We consider the other two cases.

Simulation when Alice is corrupt: Since Bob has no private inputs to FCOM, the simulator faithfully
simulates the honest Bob protocol and honest functionalities F0,F1,F2. If the simulated Bob ever aborts,
then the simulation also aborts. In step (2), the simulator obtains the value z1 the value recorded by F1.
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When the commit phase finishes, the simulator sends (COMMIT, z1) to FCOM. Later, in the reveal phase, if
the simulated ever Bob outputs (REVEAL, z1), then the simulator sends REVEAL to FCOM; if the simulated
Bob outputs (REVEAL, x) for some x 6= z1, then the simulation aborts. The simulation is clearly perfect
except in the case where the simulated Bob outputs (REVEAL, x) for some x 6= z1. We will show that this
event happens with only negligible probability.

First, we argue that at the end of the commitment phase, the probability that there exists γ such that
opening(τ2, γ) = r is negligible. By the security property of ωL, the functionality F2 records a value
z2 such that (except with negligible probability) there does not exist γ such that opening(τ2, γ) 6= z2.
Hence, it suffices to show that F2 records z2 = r with at most negligible probability. However, consider
an adversary A attacking the standalone hiding property of ωR. Adversary A internally simulates Alice and
the functionality instances F0 and F2. It simulates Alice’s interaction with F1 by interacting in a challenge
commit phase of ωR, to a random value r. After the commit phase, A outputs the value z2 output by
its internally simulated F2. By the standalone hiding property of ωR, this output can equal r with only
negligible probability.

Given this, with overwhelming probability, the second clause of the WI proof statement is false. By the
security property of ωL, the first clause is only true when Alice is attempting to reveal to x = z1, except
with negligible probability. Thus by the soundness of WI proof, if the simulated Bob outputs (REVEAL, x),
then x = z1 except for negligible probability, as desired.

Simulation when Bob is corrupt: Here, the simulator will simulate F0, F1 and F2 during the commit-
ment phase, as follows:

1. First, it carries out an honest simulation of step (1), where it faithfully runs F0 and the receiver’s
protocol with F0. At the end of this it obtains a value z0 as the value recorded by F0.

2. Then it simulates step (2) by internally simulating F1 and the honest sender, but with the sender’s
input as 0κ (instead of Alice’s input x, which it does not know yet).

3. It simulates step (3) similarly, but this time using z0 as the sender’s input (instead of 0κ); note that this
yields (τ2, γ2) such that opening(τ2, γ2) = z0.

4. Then it simulates step (4), the reveal phase of F2. If the simulated F2 outputs (REVEAL, r) to the
simulated sender, then the simulator ensures that r = z0. If this is not the case, then the simulator
fails.

The reveal phase is simulated as follows:

1. First the simulator obtains (REVEAL, x) from FCOM. It simulates the protocol execution by sending x
and then gives a WI proof for the statement S(x, r, τ1, τ2), by using the witness γ2 and the fact that
opening(τ2, γ) = r.

First, we observe that the probability of the simulator failing (in step (4)) of commitment is negligible
(by the security of ωL). To show that the simulation is indistinguishable from the real protocol execution
(conditioned on the simulator not failing), we shall rely on the hiding property of ωR and the witness indis-
tinguishability of the WI proof. In more detail, we employ the following hybrid simulators:

Hybrid 1: Same as the simulation, except that in step (2) the simulator uses Alice’s true input x rather than
0κ as the input to the (simulated) sender in its interaction with (simulated) F1. The entire interaction
can be carried out by an adversary in the standalone hiding experiment for ωR: the adversary receives
either a commitment to x or to 0κ, and it can simulate the rest of the interaction without receiving the
opening of that commitment (the opening is not used as a witness to the WI proof later). Thus these
two interactions are indistinguishable.
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Hybrid 2: Same as above, except that in the reveal phase, the simulator uses the witness γ1 in the WI proof,
since opening(τ1, γ1) = x. This interaction is indistinguishable from the previous by a straightfor-
ward application of the witness-indistinguishability property in the WI proof.

Real world: Same as above, except that the simulator sends 0κ to F2 instead of z0, in step (3). This interac-
tion is indistinguishable from the previous hybrid, by an identical argument as was used to show that
Hybrid 1 and the simulation are indistinguishable.

D.2 Obtaining Extractable Commitment from FCC

In this section, we show how FEXTCOM can be securely realized using FCC. We first show a protocol π in
the FCC-hybrid model, and then define appropriate (πL, πR) protocols such that π is a secure realization of
F (πL,πR)

EXTCOM .

Parameters. Let Com be a statistically binding, standalone-secure commitment scheme with a non-
interactive reveal phase (for instance, Naor’s commitment scheme [N91], which relies only on the existence
of one-way functions). Let C1, . . . be a family of error-correcting codes, with the following properties:

• Ci is a linear (ni, ki) code over GF (2), with generator matrix Mi.
• ki, ni ∈ Θ(i).
• It is possible to efficiently (polynomial time in i) correct Θ(ni) errors in Ci.

These parameters can be easily achieved, for instance, by a Justesen code [MS83].

The protocol. We define the following interactive protocol π in the FCC-hybrid model. The security
parameter is κ.

1. (Commit phase.) On input (COMMIT, b) (for b ∈ {0, 1}), Alice chooses random string s ∈ {0, 1}kκ

and computes the associated codeword t = (Mκ)s. She commits to t using Com.
2. Bob chooses a string y ∈ {0, 1}nκ by setting each yi = 0 with probability kκ/2nκ = Θ(1).
3. For i ∈ {1, . . . , nκ}, do:

(a) Alice and Bob invoke a session of FCC with Alice as sender. Alice sends ti, the ith bit of t, as
her input to FCC, and Bob sends input yi.
Recall that in FCC, Alice learns yi; Bob learns ti whenever yi = 0.

(b) If Alice sees that Bob has set yi = 0 as many as kκ times so far, then Alice aborts the protocol.

4. The bits of t that Bob has picked up are a linear function of s (a subset of the rows of Mκ), but are
insufficient to completely determine s. Let g be a vector in {0, 1}kκ linearly independent of all the
rows of Mκ for which Alice has revealed the corresponding bits of t. g can be computed by both
parties in some canonical way. Then Alice sends c = b⊕ 〈g, s〉 to Bob.

5. Both parties locally output τ to consist of y, y ∧ t, g, c, and the transcript of the commitment to t in
step (1).

6. Alice locally outputs γ to consist of s, t and the non-interactive opening to the commitment t.
7. (Reveal phase) Alice sends γ to Bob. We define opening(τ, γ) = ⊥ if it does not contain a valid

opening of the commitment of t to a valid codeword Mκs, or if the bits of t are not consistent with y
and y ∧ t computed in step (3). Otherwise, opening(τ, γ) = c⊕ 〈g, s〉.

We define two protocols πL and πR (in the plain model, without access to FCC), as follows.
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• πL is identical to π, except that Bob honestly plays the role of FCC. Thus in step (3), Alice sends
every bit ti to Bob, and Bob responds by sending yi to Alice.

After the commit phase, Bob uses the error-decoding algorithm of Cκ to decode the sequence of bits
t = t1t2 · · · to its maximum likelihood dataword s̃, and locally outputs the extracted value z =
c⊕ 〈g, s̃〉.

• πR is identical to π, except that Alice honestly plays the role of FCC. Thus in step (3), Bob sends each
yi to Alice and Alice responds appropriately according to ti.

Lemma 5.

1. If Com is a statistically binding commitment scheme with non-interactive reveal, then (πL, πR) are a
pair of complementary statistically binding commitment protocols.

2. The protocol π securely realizes F (πL,πR)
EXTCOM in the FCC-hybrid model.

Proof. Given that part (1) is true, part (2) is easily demonstrated via a trivial simulation, since (πL, πR) are
simply π with FCC honestly “collapsed” into the responsibilities of one party. The non-trivial step is to show
that part (1) is true.

First, we claim that πR is a statistically binding standalone commitment scheme. This is straight-forward
by the security of the component Com commitment scheme. We remark that, by applying a standard
Chernoff bound, we see that an honest Bob will request to see more than kκ bits of t only with exponentially
low probability κ.

Next, we must show that πL is extractable. As in Definition 7, we consider an interaction between a
corrupt Alice and honest Bob. Let t̃ be the sequence of inputs sent by Alice in step (3). After step (4), Bob
decodes t̃ to obtain maximum likelihood dataword s̃, and locally outputs z = c⊕ 〈g, s̃〉.

We now argue that the extracted value z is correct. In step (1) of πR, Alice gives a statistically binding
commitment, so with overwhelming probability there is a well-defined unique value t∗ such that the com-
mitment can be successfully opened only to t∗. We condition on this overwhelming-probability event. If t∗

is not a codeword of Cκ, then Bob will never accept in the reveal phase of π̂, and our extraction is trivially
correct. Otherwise, assume t∗ is a codeword, t∗ = (Mκ)s∗. If s∗ is equal to s̃ computed by Bob, then the
extraction is also correct.

However, if s̃ 6= s∗, then the Hamming distance between t̃ and codeword t∗ is at least the minimum
distance of Cκ, which is d = Θ(nκ). With overwhelming probability 1 − (kκ/2nκ)d = 1 − O(1)Θ(κ), one
of these d positions would have appeared in τ as a result of Bob choosing yi = 0. When this happens, Bob
will never accept in the reveal phase and our extraction is correct.

E Classification of Reactive Functionalities
E.1 Definitions
Definition 8. A deterministic finite functionality (DFF) is a tuple F = (Q,X, Y, δ, fA, fB, q0), where

• Q is a finite set of states,
• X and Y are finite input sets,
• δ : Q×X × Y → Q is the (partial) state transition function,
• fA, fB : Q×X × Y → {0, 1}∗ are two output functions, and
• q0 ∈ Q is the start state.
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The behavior of F as an ideal functionality is defined formally in Figure 4.
For simplicity, we often use the above standard variable names (Q, X , Y , δ, fA, fB , q0) when the

context of F is clear.

We emphasize that, like an SFE, a DFF provides no guarantee about output fairness — the adversary is
in complete control over the delivery of outputs.

1. Set variable q to be the initial state q0. Then repeatedly do:
2. Wait for input x ∈ X from Alice and input y ∈ Y from Bob. If δ(q, x, y) is undefined, then

simply stop responding.
3. Set s = fA(q, x, y) and t = fB(q, x, y). If Alice is corrupt, send (OUTPUT, s) to the adversary;

if Bob is corrupt, send (OUTPUT, t) to the adversary; otherwise send OUTPUT to the adversary.
4. On input DELIVER from the adversary, deliver s to Alice and t to Bob. Then update variable
q ← δ(q, x, y) and repeat from step (2).

Figure 4: Semantics of the DFF functionality F = (Q,X, Y, δ, fA, fB, q0)

E.2 Dominating Inputs
In arguing security, it is often convenient for Alice to assume that Bob will supply an input that is the “worst
possible” for Alice, among all inputs that achieve the same effect. Towards that end, we develop the notion
of dominating inputs to formally define when one input x “achieves the same effect” as another input x′,
in the context of a reactive functionality. Intuitively, this happens when every behavior that can be induced
by sending x at a certain point can also be induced by sending x′ instead, and thereafter appropriately
translating subsequent inputs and outputs. More formally:

Definition 9. Let F be a finite functionality, and let x, x′ ∈ X be inputs for Alice. We say that x dominates
x′ in the first round ofF , and write x ≥A x′, if there is a secure protocol forF in theF-hybrid model, where
the protocol for Bob is to run the dummy protocol (as Bob), and the protocol for Alice has the property that
whenever the environment provides input x′ for Alice in the first round, the protocol instead sends x to the
functionality in the first round.

We define domination for Bob inputs analogously, with the roles of Alice and Bob reversed. Without
loss of generality, the secure protocol from the definition above may be just the dummy protocol, except
possibly when the environment provides x′ as Alice’s first input. In this case, the definition requires that any
behavior of F that is possible when Alice uses x′ as her first input can also be induced in an online fashion
by using x as her first input (and subsequently translating inputs/outputs according to some strategy).

Note that domination is trivially reflexive, and due to the universal composition theorem, it is also
transitive. Also note that if x dominates x′, then both x and x′ must induce the same output for Bob in the
first round, regardless of Bob’s input.

Combinatorial characterization. We now show that there is also an alternative characterization of dom-
inating inputs that is purely combinatorial. The previous definition in terms of secure protocols is more
intuitive, but the combinatorial criteria will be useful in proving Lemma 7, which is crucially used in Theo-
rem 4.

Definition 10. Let F be a DFF, S ⊆ Q2, let x, x′ ∈ X , and let z be a possible output of fA. We define:

next(S, x, x′, z) =
{(
δ(q, x, y), δ(q′, x′, y)

) ∣∣∣ ∃(q, q′) ∈ S, y ∈ Y : fA(q, x, y) = z
}
.

The intuition behind this definition is as follows. Suppose that in some protocol that uses F , Alice has
received inputs x′1, x

′
2, . . . from the environment but has instead sent x1, x2, . . . to F . Suppose Alice is

keeping track of S, the set of pairs (q, q′), such that:
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• There is a sequence of inputs for Bob, y1, y2, . . ., such that Alice’s view of F is consistent with F’s
behavior on input sequence (x′1, y1), (x′2, y2), . . .

• The input sequence (x1, y1), (x2, y2), . . . would put F in state q.
• The input sequence (x′1, y1), (x′2, y2), . . . would put F in state q′.

Then next(S, x, x′, r) defines the subsequent value of S if the environment then provides input x′ but the
protocol instead sends x to F and receives output z.

Definition 11. Let F be a DFF, S ⊆ Q2, and x, x′ ∈ X . We say that (x, x′) is good for S if the following
are true:

1. For all (q, q′) ∈ S, we have fB(q, x, ·) ≡ fB(q′, x′, ·),
2. For all outputs z, we have

∣∣{fA(q′, x′, y) | ∃(q, q′) ∈ S, y ∈ Y such that fA(q, x, y) = z}
∣∣ = 1,

3. For all outputs z and all x′ ∈ X , there exists x ∈ X such that (x, x′) is good for next(S, x, x′, z).

Intuitively, suppose Alice has been sending different inputs to F than requested by the environment, but
is trying to make the behavior of F reflect the environment’s requests. If S represents Alice’s knowledge
about F’s state so far (as defined above), and S is not good for x, x′, then Alice has a chance of being caught
in the future if in the next round the environment asks her to send x but she sends x′ instead.

In case (1), there is a chance (depending on Bob’s sequence of inputs) that Alice may induce the wrong
output for Bob in this round. In case (2), Alice might send x toF and get response z as the response, but this
new view might be consistent with at least 2 states which would require Alice to send conflicting outputs to
the environment. In case (3), Alice may be able to induce correct outputs in this round, but she has a chance
of being caught in the next round if the environment happens to provide input x′.

Lemma 6. x ≥A x′ if and only if (x, x′) is good for {(q0, q0)}.

Proof. (⇐) Suppose (x, x′) is good for {(q0, q0)}. We must describe a strategy for Alice to send x in the
first round, but make it appear as if she had sent x′ and is running the dummy protocol. Without loss of
generality, suppose the environment internally simulates an instance of F , with the inputs of its choice, and
compares the parties’ outputs with the expected outputs from this simulated instance of F .

Then the protocol for Alice is to maintain a state of knowledge S according to her view, as above,
starting with S = {(q0, q0)}. She maintains the following invariants:

• For all x′ ∈ X that the environment might supply in the next round, there is some x ∈ X such that
(x, x′) is good for S.

• If the external instance of F is in state q and the environment’s internally simulated instance of F is
in state q′, then (q, q′) ∈ S.

The claim is true for the base case of S = {(q0, q0)}, since the environment will send x′ in the first round,
and (x, x′) is good for S.

The protocol proceeds as follows: If the environment provides input x′ for Alice, then Alice sends input
x to F such that (x, x′) is good for S. Such an x must exist by the inductive hypothesis. Then we have:

• Bob reports the correct output in this round, since his output is fB(q, x, y), and the environment is
expecting fB(q′, x′, y), and fB(q, x, ·) ≡ fB(q′, x′, ·) from case (1) of Definition 11.

• Alice receives input z = fA(q, x, y), and the environment is expecting z′ = fA(q′, x′, y). By case (2)
of Definition 11, given S, x, x′, and z, Alice can compute a singleton set which contains z′, so she
reports this output to the environment.
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• Alice updates S ← next(S, x, x′, z). By case (3) of Definition 11 and the definition of next(·), the
inductive invariants are maintained for the next round.

(⇒) Assume that (x, x′) is not good for {(q0, q0)}, and consider any Alice protocol that replaces x′ by
x in the first round. It suffices to construct an environment that successfully distinguishes this interaction
from an interaction in which Alice uses the dummy protocol.

Let n be the minimum number of times that case (3) of Definition 11 needs to be applied to show that
(x, x′) is not good for {(q0, q0)}. We note that n is always at most m = 2|Q|2 |X|2, a constant.

We will construct Z0, which sends x′ to Alice in the first round, and otherwise sends randomly chosen
inputs, for a total of m rounds. As usual, it also internally simulates an instance of F , to which it sends the
inputs that it has chosen for Alice and Bob. Z0 outputs 1 if Alice and Bob’s outputs always match that of its
simulated instance of F , and 0 otherwise.

Clearly Z0 outputs 1 with probability 1 when both parties run the dummy protocol. It suffices to show
that when Alice runs a protocol which in the first round sends x instead of x′, the environment Z0 outputs
0 with at least some constant probability. We will prove via induction that Z0 outputs 0 with probability
at least 2(|Y ||X|)−n, where n is defined as above. Let qk be the state of the external instance of F after
k rounds, and q′k be the state of the internally simulated instance of F after k rounds. As before, we let
Sk ⊆ Q2 denote the set of pairs (q, q′) that are consistent with Alice’s view after k rounds.

We first claim that Pr[(qk, q′k) = (q, q′) | (q, q′) ∈ Sk] ≥ |Y |−k. In other words, after k rounds of
interacting withF , every (q, q′) ∈ Sk has some constant probability of being the “correct” pair, from Alice’s
point of view. The claim is trivially true for k = 0. For the inductive step, observe that by the definition of
next(·), every (p, p′) ∈ Sk+1 is in the set owing to at least one particular predecessor (q, q′) ∈ Sk and Bob
input y ∈ Y . Thus the probability that (p, p′) is correct is at least the probability that the predecessor (q, q′)
is correct, and the appropriate y ∈ Y is chosen, which is |Y |−k−1 as desired.

We will prove the claim about Z0’s distinguishing probability inductively in n. We will maintain the
invariant that (xk+1, x

′
k+1) is not good for Sk, which is true in the base case.

Suppose (xk+1, x
′
k+1) is not good for Sk due to case (1) of Definition 11. Then with probability at least

|Y |−k, the two instances of F are in the “bad” states (q, q′) from the negation of case (1). Conditioned
on this event, then with probability 1/|Y |, the environment chooses input yk such that Bob’s output and
expected output disagree. The environment outputs 0 with probability at least |Y |−k−1.

Suppose (xk+1, x
′
k+1) is not good for Sk due to case (2) of Definition 11. Then there are two triples

(q, q′, y) such that if the two instances of F are in states q and q′ respectively, and Bob’s input is chosen
as y, then Alice’s output is the same, but her expected output is different. The correct value of (qk, q′k, yk)
is indeed one of these triples (q, q′, y) with probability at least 2/|Y |k+1, and conditioned on this being
the case, Alice’s reported output is incorrect with probability 1/2. Overall, the environment outputs 0 with
probability at least |Y |−k−1.

Suppose (xk+1, x
′
k+1) is not good for Sk due to case (3) of Definition 11. Then with probability at least

1/|X||Y |, the environment chooses x′k+2 and yk+2 to be among the “bad” ones so that Alice receives output
z and for all xk+2, (xk+2, x

′
k+2) is not good for next(Sk, xk+1, x

′
k+1, z). We may condition on this event

and apply the inductive hypothesis.
We see that the total probability that Z0 outputs 0 is at least |X|−n|Y |−2n.

The first half of the above proof also immediately implies the following useful lemma:

Lemma 7. Let F be a DFF. Then there is an environment Z0 with the following properties:

• Z0 sends a constant number of inputs to F ,
• Z0 always outputs 1 when interacting with two parties running the dummy protocol on an instance of
F ,
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• For every x, x′ ∈ X , if x 6≥A x′, then Z0 has a constant probability of outputting 0 when interacting
with an Alice protocol that sends x instead of x′ in the first round.

The Z0 in question is the environment that simply chooses random inputs, and compares the responses
to the known, deterministic behavior of F . From the proof of Lemma 6, we see that Z0 needs to execute for
only m rounds, where m is a constant that depends only on the size of F . The distinguishing probability of
Z0 is at least |X|−m|Y |−2m, a constant.

E.3 Simple States & Safe Transitions
Definition 12. Let F be a DFF, and let q be one of its states. We define F [q] as the functionality obtained
by modifying F so that its start state is q.

Definition 13. Let F be a DFF, and let q be one of its states. We say that q is a simple state if:

• The input/output behavior of F at state q — (fA(q, ·, ·), fB(q, ·, ·)) — is a trivial SFE; and
• For all Alice inputs x, x′ ∈ X such that fB(q, x, ·) ≡ fB(q, x′, ·), there exists an Alice input x∗ ∈ X

such that x∗ ≥A x and x∗ ≥A x′ in F [q]; and
• For all Bob inputs y, y′ ∈ Y such that fA(q, ·, y) ≡ fA(q, ·, y′), there exists a Bob input y∗ ∈ Y such

that y∗ ≥B y and y∗ ≥B y′ in F [q].

Suppose q is a simple state. We write x
q∼ x′ if fB(q, x, ·) ≡ fB(q, x′, ·). The relation

q∼ induces
equivalence classes overX . When q is a simple state, then within each such equivalence class, there exists at
least one input x∗ which dominates all other members of its class. For each equivalence class, we arbitrarily
pick a single such input x∗ and call it a master input for state q. Similarly we define master inputs for Bob
by exchanging the roles of Alice and Bob.

Definition 14. Let F be a DFF, We say that a transition is safe if it leaves a simple state q on inputs (x, y),
where x and y are both master inputs for state q.

We define r(F) to be the functionality which runs F , except that in the first round only, it allows only
safe transitions to be taken. r(F) can be written as a copy of F plus a new start state. The new start state
of r(F) duplicates all the safe transitions of F’s start state.

Observation 1. If a safe transition was just taken in F , then Alice (resp. Bob) can uniquely determine Bob’s
(resp. Alice’s) input in the previous round and the current state of F , given only the previous state of F and
Alice’s (resp. Bob’s) input and output in the previous round.

Proof. We will show that Alice has no uncertainty about which master input Bob used, thus no uncertainty
about the resulting state of F . If a safe transition was just taken from q, then q was a simple state and
its associated SFE (fA(q, ·, ·), fB(q, ·, ·)) is trivial. Thus either fA(q, ·, ·) is insensitive to Bob’s input, or
fB(q, ·, ·) is insensitive to Alice’s input.

If fA(q, ·, ·) is insensitive to Bob’s input, then Bob has a single master input y for q (all of his inputs are
in a single equivalence class under

q∼). There is no uncertainty for Alice regarding which master input Bob
used.

If fB(q, ·, ·) is insensitive to Alice’s input, then let x∗ be Alice’s unique master input. If y, y′ are distinct
master inputs for Bob, then fA(q, ·, y) 6≡ fA(q, ·, y′). In other words, fA(q, x, y) 6= fA(q, x, y′) for some s.
Since x∗ ≥A x, we must have fA(q, x∗, y) 6= fA(q, x∗, y′), so Alice (who must have used input x∗) has no
uncertainty about which master input Bob used.

Lemma 8. If the start state of F is simple, then r(F) vSTAT F vSTAT r(F). Furthermore, if q is reachable
from the start state of F via a safe transition, then F [q] vSTAT F .
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Proof. The protocol for r(F) vSTAT F is the dummy protocol, since r(F) implements simply a subset of
the behavior of F . Simulation is trivial unless in the first round, the corrupt party (say, Alice) sends an input
x to F which is not a master input for q0. The simulator must send the corresponding master input x∗ (from
the

q0∼ equivalence class of x) in the ideal world, and then it uses the translation protocol guaranteed by the
definition of x∗ ≥A x to provide a consistent view to Alice and induce correct outputs for Bob.

Similarly, the protocol for F vSTAT r(F) is simply the dual of the above protocol. On input x in the first
round, Alice sends x∗ to r(F), where x∗ is the master input from the

q0∼-equivalence class of x. Thereafter,
Alice runs the protocol guaranteed by the fact that x∗ ≥A x. Bob’s protocol is analogous. Simulation is
a trivial dummy simulation, since any valid sequence of inputs to r(F) in the real world also produces the
same outcome in the F-ideal world (r(F) implements a subset of the behavior of F).

Note that in r(F), the added start state has no incoming transitions; thus (r(F))[q] = F [q] if q is a state
in F . So to show F [q] vSTAT F , it suffices to show that (r(F))[q] vSTAT r(F). Suppose q is reachable in F
from the start state via safe transition on master inputs x∗, y∗. The protocol for F [q] is for Alice and Bob to
send x∗ and y∗ to r(F), respectively, as a “preamble”. Each party can determine with certainty, given their
input and output in this preamble, whether r(F) is in state q (since only safe transitions can be taken from
the start state of r(F)). If the functionality is not in q, then the parties abort. Otherwise, the functionality
is r(F) in state q as desired, so the parties thereafter run the dummy protocol. Simulation is trivial – the
simulator aborts if the corrupt party does not send its specified input (x∗ or y∗) in the preamble; otherwise it
runs a dummy simulation.

E.4 Complete Characterization of DFFs
We now prove our main classification regarding reactive functionalities, which is a useful alternative char-
acterization of secure realizability for DFFs. Interestingly, though this chapter focuses exclusively on the
PPT setting, our characterization of DFFs in this section also applies in the unbounded setting. Our charac-
terization is as follows:

Theorem 4 (restated). Let F be a DFF. Then the following are equivalent:

1. F is non-trivial.
2. FCOM vSTAT F or G vSTAT F for some non-trivial SFE functionality G.
3. Every state reachable from F’s start state via a sequence of safe transitions is a safe state.

To prove Theorem 4, we construct two protocols in the following lemmas, both of which are uncon-
ditionally secure. Also, the definition of triviality for SFE functionalities is the same in both the PPT and
unbounded settings. Thus, the lemma provides a complete characterization of secure realizability for DFFs
in both settings. Finally, note that condition (3) of Theorem 4 can be expressed completely combinatorially
(automata-theoretically) using Lemma 6, giving the first such alternate characterization of realizability for
any large class of arbitrary reactive functionalities.

We have that (2)⇒ (1) of Theorem 4, by the fact that FCOM is unconditionally non-trivial. We prove (3)
⇒ (2) and (1)⇒ (3) in the following two lemmas:

Lemma 9. If a non-simple state in F is reachable via a sequence of safe transitions from F’s start state,
then either FCOM vSTAT F or G vSTAT F for some non-trivial SFE functionality G.

Proof. Without loss of generality (by Lemma 8) we assume that the start state of F is non-simple.
First, suppose the start state q0 of F is non-simple because its input/output behavior in the first round

is non-trivial. Then in the F-hybrid model we can easily securely realize the SFE functionality G =
(fA(q0, ·, ·), fB(q0, ·, ·)), by the simple dummy protocol. Even though F may keep in its memory arbi-
trary information about the first-round inputs, the information can never be accessed since honest parties
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never send inputs to F after its first round, and F waits for inputs from both parties before giving any
output. Thus G vSTAT F .

Otherwise, assume that the input/output behavior in the first round is a trivial SFE, and that q0 is non-
simple for one of the other reasons in Definition 13. The two cases are symmetric, and we present the
case where Alice can commit to Bob. Suppose there are Alice inputs x∗0, x

∗
1 ∈ X such that fB(q0, x∗0, ·) ≡

fB(q0, x∗1, ·), but for all x ∈ X , either x 6≥A x∗0 or x 6≥A x∗1. Intuitively, this means that F binds Alice to
her choice between inputs x∗0 and x∗1 — there are behaviors of F possible when her first input is x∗b , which
are not possible when her first input is x∗1−b. We formalize this intuition by using the first input round of F
to let Alice commit a bit to Bob.

Recall the “complete” environment Z0 from Lemma 7, and suppose it runs for m rounds and has a
distinguishing probability p > 0. Our protocol for FCOM is to instantiate N = 2dlog1−p 0.5eκ = Θ(κ)
independent instances of F , where κ is the security parameter. We will write Fi to refer to the ith instance
of F . The protocol is as follows:

1. (Commit phase, on Alice input (COMMIT, b), where b ∈ {0, 1}) Alice sends x∗b to each Fi. For each
i, Bob sends a random yi1 ∈ Y to Fi and waits for output fB(q0, yi1, x

∗
0) = fB(q0, yi1, x

∗
1). If he

receives a different input, he aborts. Otherwise, he outputs COMMITTED.
2. (Reveal phase, on Alice input REVEAL) Alice sends b to Bob. For each i, Alice sends her input/output

view of Fi to Bob (x∗b and the first-round response from Fi). If any of these reported views involve
Alice sending something other than x∗b to Fi, then Bob aborts. Otherwise, Bob sets xi1 = x∗b for all i.

3. For j = 2 to m:

(a) Bob sends Alice a randomly chosen xij ∈ X . Alice sends xij to Fi.

(b) Bob sends a randomly chosen input yij ∈ Y to Fi.

(c) For each i, Alice reports to Bob her output from Fi in this round.

4. If for any i, Alice’s reported view or Bob’s outputs from Fi does not match the (deterministic)
behavior of F on input sequence (xi1, yi1), (xi2, yi2), . . ., then Bob aborts. Otherwise, he outputs
(REVEAL, b).

When Bob is corrupt, the simulation is to do the following for each i: When Bob sends yi1 to F in the
commit phase, simulate Fi’s response as fB(q0, x∗0, yi1) = fB(q0, x∗1, yi1). In the reveal phase, to open
to a bit b, simulate that Alice sent Bob x∗b and the view that is consistent with that input: fA(q0, x∗b , yi1).
Maintain the corresponding state qi of Fi after seeing inputs (x∗b , yi1). Then when Bob sends xij to Alice
and yij to Fi, simulate that Fi gave the correct output to Bob and that Alice reported back the correct output
from Fi that is consistent with F receiving inputs xij , yij in state qi. Each time, also update the state qi
according to those inputs. It is clear that the simulation is perfect.

When Alice is corrupt, the simulation is as follows: The simulator faithfully simulates each instance of
F and the behavior of an honest Bob. If at any point, the simulated Bob aborts, then the simulation aborts.
Suppose Alice sends x̃i1 to each Fi in the commit phase, and that the simulation has not aborted at the end
of the commit phase. If the majority of x̃i1 values satisfy x̃i1 ≥A x∗0, then the simulator sends (COMMIT, 0)
to FCOM; otherwise it sends (COMMIT, 1). Note that by the properties of F , each x̃i1 cannot dominate both
x∗0 and x∗1. Let b be the bit that the simulator sent to FCOM.

If the simulated Bob ever outputs (REVEAL, b), then the simulator sends REVEAL to FCOM. The sim-
ulation is perfect except for the case where the simulated Bob outputs (REVEAL, 1 − b) (in this case, the
real world interaction ends with Bob outputting (REVEAL, 1− b), while the ideal world interaction aborts).
We show that this event happens with negligible probability, and thus our overall simulation is statistically
sound.
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Suppose Alice sends b′ = 1 − b at the beginning of the reveal phase. Say that an instance Fi is bad if
x̃i1 6≥A x∗1−b. Note that at least half of the instances of Fi are bad. When an instance Fi is bad, Z0 can
distinguish with probability at least p between the cases of F receiving first input x̃i1 and x∗1−b from Alice.
However, in each instance of Fi, Bob is sending random inputs to Alice (who sent x̃i1 as the first input to
Fi), sending random inputs himself to Fi, obtaining his own output and Alice’s reported output from Fi

in an on-line fashion, and comparing the result to the known behavior of F (when x∗1−b is the first input
of Alice). This is exactly what Z0 does in the definition of x̃i1 ≥A x∗1−b, so Bob will detect an error with
probability p in each bad instance. In the real world, Bob would accept in this reveal phase with probability
at most (1− p)−N/2 ≤ 2−κ, which is negligible as desired.

Lemma 10. If no non-simple state in F is reachable via a sequence of safe transitions from F’s start state,
then F is trivial.

Proof. We first define an intermediate functionality R(F), which is F with all its non-safe transitions re-
moved. We first observe that R(F) is trivial (in fact, R(F) is trivial for all F). Only safe transitions may
be taken in R(F), thus both parties’ views uniquely determine the state of R(F). If the current state q was
non-simple in F , then q is a dead state in R(F) and the protocol is trivial. Otherwise, note that restricting
a simple state’s transition function to its safe transitions preserves the triviality of the SFE round function.
Thus the protocol’s behavior when in state q is to simply evaluate a trivial SFE.

Next, to prove the main claim it suffices to show that F vSTAT R(F), since R(F) is trivial. We prove
a strengthened claim; namely that if q is safely reachable (i.e., reachable from the start state by a sequence
of safe transitions) in F , then F [q] vSTAT (R(F))[q]. To prove this stronger claim, we construct a family of
protocols π̂q, for every such q.

First, let πq denote the protocol guaranteed by F [q] vSTAT r(F [q]) (Lemma 8). Then the protocol π̂q is
as follows:

1. Run πq to interact with the functionality.
2. After the first round, we will have sent an input to the functionality and received an output. Assuming

that the functionality was (R(F))[q], use the first round’s input/output to determine the next state q′

(Observation 1)
3. Continue running πq, but hereafter, instead of letting it interact directly with the functionality, we

recursively instantiate π̂q′ . We let our πq instance interface with π̂q′ , which we let interact directly
with the functionality.

The protocol is recursive, and after k rounds, must maintain a stack depth of size k. We prove by induction
on k that π̂q is a secure protocol for F [q] using (R(F))[q], against environments that run the protocol for
k ≥ 0 steps. The claim is trivially true for k = 0.

Note that simulation is trivial if either party is corrupt. Such an adversary is running the protocol
interacting with (R(F))[q], which is a subset of the functionality F [q]. Thus the simulator is a dummy
simulator. It suffices to show that the output of the protocol is correct (indistinguishable from the ideal
interaction) when both parties are honest.

In the first round, both parties are running πq, interacting with (R(F))[q]. Although πq is designed to
interact with r(F [q]), the behavior of both these functionalities is identical in the first round (including the
next-state function). Thus the first round of outputs is correct, by the security of πq. For the same reason,
step 2 of π̂q correctly identifies the next state q′ of (R(F))[q]. Clearly (R(F))[q][q′] = (R(F))[q′], so after
step 1 of the protocol, the functionality is identical to a fresh instantiation of (R(F))[q′]. At the same time,
we also instantiate a fresh instance of π̂q′ to interact with this functionality. By the inductive hypothesis,
hereafter πq is interacting with an interface that is indistinguishable from an ideal interaction with F [q′].
However, an external functionality which behaves like R(F)[q] in the first round, then after transitioning
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to state q′ behaves like F [q′], is simply the functionality r(F [q]). In other words, the entire protocol π̂q is
indistinguishable from running πq on r(F [q]). By definition of πq, this is indistinguishable from an ideal
interaction with F [q] itself.

F Extensions of the Zero-One Law
In the Public Channel Model. We formulated our results in the private channel model, where the two
parties can communicate with each other privately via an ideal communication channel. (However, the ad-
versary is allowed learn the number of bits communicated.) This is perhaps the natural model for capturing
the cryptographic complexity of 2-party computation. Nevertheless, our main result readily extends to a
model where the parties use a public channel completely controlled by the adversary (as is more natural in
the standard UC framework). This follows from the fact that under sh-OT assumption, the private channel
securely reduces to the public channel (i.e., is a trivial functionality in the public channel model). In par-
ticular, [GKM+00] prove the security of such a construction. (If the public channels are not authenticated
channels, then digital signatures are used to achieve authentication, with identities of the parties being their
signature verification keys. Note that digital signatures also follow from one-way functions [R90], in turn
implied by sh-OT assumption.)

Simultaneous Active and Passive Security. The security definition in [BMM99] considers a protocol
secure only if it is simultaneously secure against active and semi-honest adversaries. Our notion of reduction,
on the other hand, used a security definition which requires security only against active corruption. It is well-
known that these two definitions differ (in the computationally unbounded setting). However, we can show
that under such a tighter notion of reduction too, our main result holds unaltered. To show this we need
to establish, under the sh-OT assumption, the triviality of those functionalities which in the unconditional
setting, are trivial for security against active corruption, but non-trivial against semi-honest corruption.

We illustrate how this is done for an asymmetric SFE, in which only Bob receives an output. First,
we build a protocol for the functionality which is secure against semi-honest corruption (guaranteed by
sh-OT assumption). Then we “half-compile” this protocol using standalone secure commitments and zero-
knowledge proofs. That is, at every step of the protocol, Alice has to prove the correctness of her steps to
Bob (but not vice versa). Finally we run this half-compiled protocol in which Bob uses his real input as
the input, but Alice uses a “sanitized” version of her real input; this sanitization is prescribed by the natural
protocol which establishes the triviality of the functionality in the active-corruption setting. It can be shown
that this protocol remains simultaneously secure against active and semi-honest corruptions. The details and
extensions to non-reactive functionalities, is deferred to the final version of this paper.

G Break-Down of the Zero-One Law
G.1 Fixed-Role Reduction
Note that the FCC functionality is not symmetric with respect to the roles of Alice and Bob. In showing
that FCC is complete, our protocol for FCOM uses ideal access to FCC in “both directions”. Let us say that
a secure protocol for FCOM is a fixed-role reduction to FCC if the committer (resp. receiver) always access
FCC in the same role (Alice or Bob) throughout the FCOM protocol.

Theorem 6. There is no fixed-role reduction from FCOM to FCC.

Proof. Suppose there is a protocol that securely realizes FCOM in the FCC-hybrid model where Alice, the
committer forFCOM, is always the “sender” inFCC. Then Alice can equivocate in such a protocol, as follows:
she internally runs the simulator for when Bob is corrupt, playing the role of corrupt Bob, and relaying the
messages from the simulator to Bob. When the protocol requires Alice and Bob to access FCC, Alice obtains
an input to be sent to FCC from the simulator by telling it that Bob’s input to FCC is 1 (i.e., Bob chooses to
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see Alice’s input); then Alice sends this input to FCC. If it turns out that Bob indeed chooses to see Alice’s
input, the simulation is continued normally. However, if Bob chooses to not see Alice’s input, Alice rewinds
the simulator, tells it that Bob’s input to FCC is 0; she obtains an input to FCC from the simulator, but does
not forward it to FCC (because she has already sent an input). Note that it does not matter if the input to
FCC by the simulator changes after rewinding, as this input is not revealed to Bob. Thus a corrupt Alice can
faithfully run the simulator, and in particular open the commitment to any bit specified at the beginning of
the opening phase, and the protocol is not secure.

On the other hand, suppose there is a protocol for FCOM in the FCC-hybrid model, in which Alice, the
committer for FCOM is always the “receiver” in FCC. In this case, we show that Bob can learn Alice’s input
after the commit phase and before the reveal phase. For this Bob will internally run the simulator for when
Alice is corrupt, relaying the messages from Alice in the actual protocol to this simulator. Now again, when
Alice and Bob are required to access FCC, Bob (who is the sender in FCC) will generate an input for FCC

by telling the simulator that Alice’s input to FCC is 1. Subsequently, if her input turns out to be 0, Bob will
rewind the simulator, give it 0 as Alice’s input, as above. In this case, Bob obtains Alice’s input as the bit
extracted by the simulator at the end of the commitment phase.

G.2 Unbounded-Memory Functionalities
Theorem 7. Let g : {0, 1}∗ → {0, 1}∗ be a one-way function, and define

f(x) =

{
g(x) if |x| is of the form 22n

for some n
x otherwise.

LetF be the functionality that takes input x from Alice and delivers f(x) to Bob. ThenF is neither complete
nor trivial under the vPPT reduction.

Proof. First, F is not trivial. This can be seen by an appeal to the splittability characterization of [PR08].
F is not completely invertible; in particular it is non-invertible on security parameters of the form 22n

.
On the other hand, F is not complete. Consider any purported protocol for FOT in the F-hybrid model.

For most values of the security parameter k, access to F is equivalent to a plain private communication
channel, since messages of length 22n

are either superpolynomially long in k (and thus can never be sent to
F), or sub-logarithmically short in k (and thus f can be efficiently inverted to a canonical pre-image). As
such, for these values of k, a real-world adversary has exactly as much power as a simulator. Thus, a corrupt
receiver can run the simulator algorithm for a corrupt sender, to extract both of the honest sender’s inputs.
This violates the security of FOT for these values of the security parameter, so the purported protocol is not
secure.

36


